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Abstract
A growing number of applications rely on ma-
chine learning (ML) prediction APIs. Model up-
dates or retraining can change an ML API silently.
This leads to a key challenge to API users, who
are unaware of if and how the ML model has
been changed. We take the first step towards the
study of ML API shifts. We first evaluate the
performance shifts from 2020 to 2021 of popular
ML APIs from Amazon, Baidu, and Google on a
variety of datasets. Interestingly, some API’s pre-
dictions became notably worse for a certain class
and better for another. Thus, we formulate the
API shift assessment problem as estimating how
the API model’s confusion matrix changes over
time when the data distribution is constant. Next,
we propose MASA, a principled adaptive sam-
pling algorithm to efficiently estimate confusion
matrix shifts. Empirically, MASA can accurately
estimate the confusion matrix shifts in commer-
cial ML APIs with up to 77sampling. This paves
the way for understanding and monitoring ML
API shifts efficiently.

1. Introduction
More and more machine learning (ML) applications are
deployed via ML prediction APIs. For example, one can use
Amazon text Comprehend (Ama) to determine the polarity
of a text review written by a customer. These APIs do not
require collecting data or training one’s own models, and
thus have been gaining popularity (Chen et al., 2020).

The performance of those third-party ML APIs over time,
though, is not permanent. ML API providers continuously
collect new data or change their model architectures (Qi
et al., 2020) to update their services, which may either help
or hurt downstream applications’ performance silently. For
example, we observe a 1.1% overall accuracy drop of Ama-
zon Comprehend API on the IMDB dataset in April 2021
compared to its evaluation in April 2020, as shown in Figure
1 (a) and (b). Moreover, change of the confusion matrix
of an API is often more informative than overall accuracy
alone. For example, as shown in Figure 1 (c), 5% accu-
racy drops for positive text messages, but 4% accuracy rises

for negative texts. Those performance shifts are of serious
concern due to potential disruptions to downstream tasks
as well as consistency required for audits. Thus, a natural
and important question is how to precisely assess ML API
performance shifts over time.

Contributions. This work formalizes the problem of as-
sessing API shifts as estimating the confusion matrix dif-
ferences on the same data set. A straightforward approach
is to compare the API’s prediction on randomly sampled
data. However, this may require a large number of API calls,
prohibitively expensive as each API call costs a fee. To ad-
dress this challenge, we propose MASA, a principled algo-
rithm for ML API shift assessments. To estimate the shifts,
MASA clusters the dataset first and then adaptively draws
data from different clusters to query the API. MASA auto-
mates its sampling rate from different data clusters based on
the uncertainty in the confusion matrix estimation. For ex-
ample, it may query the ML API on more samples with the
true label ”negative“ than "positive", if it is less sure about
the estimated performance change on the former. MASA
leads to a low computation and space cost as well as a fast
estimation error rate, by employing an upper-confidence-
bound approach to estimate the uncertainties.

Empirically, we observe that MASA substantially improves
the quality of estimation for API shifts. In preliminary
experiments on real world ML APIs, MASA’s assessment
error is often an order of magnitude smaller than that of
standard uniform sampling with same sample size (see, e.g.,
Figure 1 (d)). To achieve the same tolerable estimation error,
MASA can reduce the required sample size by up to 77%.

Related Work. Distribution shifts in ML deployments:
Performance shifts in ML systems have been observed in
many applications. Most of them are attributed to distribu-
tion shifts, such as covariate shifts (Shimodaira, 2000) or
label shifts (Lipton et al., 2018). API shifts are orthogonal
to distribution shifts: instead of attributing the performance
shifts to data distribution changes, API shifts concern with
ML model changes on the same dataset. To our knowledge,
this is the first work to investigate ML API shifts.

Deploying and monitoring ML APIs: Several issues in
deployed ML APIs have been studied, such as biases (Buo-
lamwini & Gebru, 2018) and bugs (Ribeiro et al., 2020).
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(b) Confusion matrix 2021 (%)

(c) Difference (API Shift) 

(a) Confusion matrix 2020 (%)

(d) Shift estimator performance 

Figure 1. ML API shift for Amazon Comprehend API on IMDB,
a sentiment analysis dataset. (a) and (b) give its (normalized)
confusion matrix in April 2020 and 2021, respectively. Overall
accuracy drops by 7%. This is because the 2021 model incorrectly
predicts more “positive” texts as “negative”, while less “negative”
as “positive”, as shown in (c). (d) Given a sample budget, the
proposed MASA can assess the API shift with much smaller error
in Frobenius norm compared to standard uniform sampling.

(Chen et al., 2020) considers the trade-offs between accu-
racy performance and cost via exploiting multiple APIs. On
the other hand, the proposed MASA focuses on estimating
(silent) API performance changes cheaply and accurately,
which has not been studied before.

2. The API Shift Problem
Empirical assessment of ML API shifts. Let us start
by an interesting observation: Commercial ML APIs’ per-
formance can change substantial over time on the same
datasets. We evaluated three commercial ML APIs, Ama-
zon Comprehend (Ama), Baidu AI (Bai) and Google
NLP (GoN), on four standard sentiment analysis datasets,
YELP, IMDB, WAIMAI, and SHOP. Figure 2 summarizes
the accuracy changes.

A couple of interesting empirical findings exist. First, API
performance changes are quite common. In fact, as shown in
Figure 2, API performance changes exceeding 1% occurred
in about 33% of all (twelve) considered ML API-dataset
combinations. Since the data distribution remains fixed,
such a change is due to ML APIs’ updates. Second, API up-
dates can lead to either overall accuracy increase or decrease,
depending on the datasets. For example, as shown in first
row of Figure 2, the Amazon Comprehend API’s accuracy
increases on YELP, WAIMAI, and SHOP, but decreases on

Figure 2. Observed overall accuracy changes (%). Each row cor-
responds to an ML API, and each column represents a dataset.
The entry is the overall accuracy difference between evaluation in
spring 2020 and spring 2021.

IMDB. It is also worth mentioning that the magnitude of
the performance change can be quite different. In fact, the
overall accuracy differences range from less than 1% to 3%
across the cases we evaluated,.

Fine-grained assessment of API shift. Overall accuracy
is often not enough. In fact, our discussion with practitioners
revealed that attribution to per class change is often much
more informative (Tsipras et al., 2020). One natural way to
quantify an ML API’s performance by its confusion matrix.
Thus, we assess the change of the confusion matrix over
time as a measure of API shift.

Formally, consider an ML service for a classification task
with L labels. For a data point x from some domain X ,
let ŷ(x) ∈ [L] denote its predicted label on x, and y(x) be
the true label. The confusion matrix is denoted by CCC ∈
RL×L where CCCi,j , Pr[y(x) = i, ŷ(x) = j]. Given a
confusion matrix of the ML API measured previously,CCCo,
the ML API shift is defined as ∆CCC , CCC −CCCO. Confusion
matrix differences are strictly more informative than overall
accuracy. For example, the trace of ∆CCC is simply the overall
accuracy. Moreover, it also explains which label gets harder
or easier for the updated API.

3. MASA: ML API Shift Assessment
This section presents MASA, an algorithmic framework
for efficient ML API shifts assessments. Suppose the old
confusion matrixCCCo and a large labeled dataset D are avail-
able. Given a query budget N , our goal is to generate ∆ĈCC,
an estimation of the API shifts as accurately as possible by
querying the ML API ŷ(·) on N samples drawn from D.

MASA achieves its goal via an adaptive sampling approach
(Figure 3). The dataset D is first divided into several parti-
tions (clusters). Then MASA determines on which sample
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Get one
sample 

Pick partition by
uncertainty score

Query
ML API 

Update uncertainty score
and other parametersPartition the dataset 

Figure 3. How MASA works. MASA first partitions the dataset. Then it picks which partition to sample based on an uncertainty
measurement, queries the ML API on the drawn sample, and uses its prediction to update uncertainty and estimated shifts. This is repeated
until the ML API has been queried N times. Finally, the estimated shifts on all partitions are fused to obtain the desired API shifts.

to query the ML API adaptively in an iterative manner: at
each iteration, it selects one data partition based on some
uncertainty measure, and queries the ML API on one sample
randomly drawn from this partition. The API’s prediction
is obtained to update the uncertainty measure as well as
the estimated shift ∆ĈCC. This process is repeated until the
ML API has been queried N times or if a stopping rule is
reached. We explain each step in detail as follows.

Data Partitioning. Note that not all samples are equally
informative for estimating API shifts. Consider, for example,
a vision API makes perfect predictions on “dog” images,
and guesses randomly on ”cat“ pictures. The “dog” images
are less informative, as even a small sample of “dog” queries
would tell that there is essentially no confusion for this class.

Thus, it is natural to partition all data points based on factors
that may correlate with their informativeness, and sample
from those partitions separately. In MASA, we use parti-
tions Di,k that each contain the points with true label i and
difficulty level k. The difficulty level is an integer indicating
how hard it is to predict the data point’s label. It needs
not be perfect, and can be simply the discretized prediction
confidence generated by some simple ML models. If the
uncertainty or variability of the ML API’s prediction on
each partition is different, then drawing a different number
of samples from each partition may improve the shift assess-
ment performance compared to standard uniform sampling.

Budget Allocation Problem. Given the data partition,
two questions arise: (i) how many samples should be drawn
from each partition, and (ii) how to estimate the ML API
shifts given available samples. The second question is rel-
atively straightforward. We use standard maximum likeli-
hood estimation for conditional accuracy Pr[ŷ(x) = j|x ∈
Di,k] using all samples drawn from partition Di,k. Then we
can use their sum weighted by each partition’s size to form
an estimator of Pr[y(x) = i, ŷ(x) = j].

Now we consider the first question (budget allocation). As
discussed in the last paragraph, more samples should be
allocated to partitions with larger uncertainty. In fact, given
a sample budget N , allocatingNNN∗

i,k =
pppi,kσσσi,k∑
i,k pppi,kσσσi,k

N sam-

ples to partition Di,k minimizes E
[
‖∆CCC −∆ĈCC‖2F

]
, the

squared Frobenius norm error of the estimated API shift.
Here, pppi,k , Pr[xi ∈ Di,j ] denotes the (normalized) par-
tition size. σσσ2

i,k , (1−
∑L
j=1 Pr2[ŷ(x) = j|x ∈ Di,k]) is

the uncertainty score of Di,k.

Uncertainty-Aware Adaptive Sampling. The optimal al-
location replies on the uncertainty score of each partition.
However, the uncertainty score is unknown and also requires
estimation. Thus, MASA adopts an iterative process to al-
locate sample budget and update the uncertainty estimation
adaptively. At each iteration, it first selects partition Di∗,k∗

to draw a sample via an upper-confidence-bound manner

(i∗, k∗)← arg max
i,k

pppi,k
NNN i,k

(
σ̂σσi,k + 4

√
a

NNN i,k

)
Here, for any partition Di,k,NNN i,k is the number of samples
already drawn before this iteration, σ̂σσi,k is the current esti-
mation of its uncertainty score, and a > 0 is a parameter to
balance between exploiting and exploration. To obtain an
initial value of σ̂σσi,k, one can draw two initial samples from
each partitions before using the above equation.

Given a drawn sample and the ML API’s prediction, MASA
then updates the estimation of the uncertainty score σ̂σσ as well
as the estimated shifts. Naively applying their definition can
be computationally expensive and also numerically unsta-
ble. Fortunately, we found an incremental update approach
requiring constant space and computation cost, similar to
online mean estimation (Cotton, 1975).

4. Preliminary Experiments
Now we give empirical evaluation of MASA on shifts esti-
mation of several real world ML services for various tasks.
Our goal is to (i) understand if and when MASA assess the
API shifts efficiently, and (ii) examine how much sample
cost MASA can reduce compared to standard sampling.

Tasks, ML APIs, and datasets. As a proof-of-concept,
we focus on the sentiment analysis task. As shown in Sec-
tion 2, we have observed four cases where >1% overall accu-
racy changes exist. Thus, we focus on evaluating MASA’s
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Figure 4. Required sample size to ensure (with high probability)
less than 1% Frobenius estimation error of Amazon API’s shift.

performance on those cases. All experiments were averaged
over 1500 runs. We created partitions using difficulty levels
induced by a cheap GitHub model with K = 3.

Budget savings achieved by MASA. In many applica-
tions, it is often enough to obtain an estimated API shift
close to the true shift, e.g., within a 1% Frobenius norm error.
Thus, a natural question arises: to reach the same tolera-
ble estimation error, how much sampling cost can MASA
reduce compared to standard sampling approaches?

To answer this question, we compare MASA with uniform
sampling. For each approach, we measure the number of
samples needed to reach 1% Frobenius norm error with prob-
ability 95%, via an upper bound on the estimated Frobenius
error. As shown in Figure 4, MASA usually requires more
than 70% fewer samples to reach such tolerable Frobenius
norm error than the uniform and stratified sampling, primar-
ily due to its shift estimation is more accurate.

Estimation error and query budget trade-offs. Then
we study the trade-offs between API shift estimation er-
ror and sample size achieved by MASA, shown in Figure
5. Note that MASA consistently outperforms standard
uniform sampling for any fixed sample size. In fact, the
achieved estimation error of MASA is usually an order of
magnitude smaller than that of uniform sampling. This veri-
fies that MASA can provide more accurate assessments of
API shifts in diverse applications.

5. Conclusion
This paper studies the problem of characterizing ML API
shifts. Our preliminary empirical study shows that API
model updates are frequent, and that some updates can re-
duce performance substantially. To assess API shifts, we
propose an algorithmic framework, MASA, which provides
significant estimation error and sample size reduction. We
are working on in-depth theoretical analysis and comprehen-
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Figure 5. Amazon API shift estimation performance and sample
size trade-offs. We compare the expected squared Frobenius norm
error of MASA versus standard uniform sampling. For any sample
size, MASA consistently leads to an estimation error much smaller
than uniform sampling across different dataset.

sive empirical evaluation. Extending our approach to more
complicated ML tasks is another interesting open question.
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