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Improving Adversarial Robustness in 3D Point Cloud Classification via
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Abstract
3D point cloud data is increasingly used in safety-
critical applications such as autonomous driving.
Thus, robustness of 3D deep learning models
against adversarial attacks is a major consider-
ation. In this paper, we systematically study
the impact of various self-supervised learning
proxy tasks on different architectures and threat
models for 3D point clouds. Specifically, we
study MLP-based (PointNet), convolution-based
(DGCNN), and transformer-based (PCT) 3D ar-
chitectures. Through comprehensive experiments,
we demonstrate that appropriate self-supervisions
can significantly enhance the robustness in 3D
point cloud recognition, achieving considerable
improvements compared to the standard adver-
sarial training baseline. Our analysis reveals that
local feature learning is desirable for adversarial
robustness since it limits the adversarial propaga-
tion between the point-level input perturbations
and the model’s final output. It also explains the
success of DGCNN and the jigsaw proxy task in
achieving 3D robustness.

1. Introduction
Point cloud data is one of the most widely used represen-
tations in 3D computer vision. It is a versatile data format
available from various sensors and computer-aided design
(CAD) models. Given such advantages, many deep learning-
based 3D perception systems have been proposed (Choy
et al., 2019; Maturana & Scherer, 2015; Qi et al., 2017;
Riegler et al., 2017; Wang & Posner, 2015; Wang et al.,
2017) and achieved great success in safety-critical applica-
tions (e.g., autonomous driving) (Shi et al., 2019; 2020; Yin
et al., 2021). Although deep learning on point clouds has
exhibited high performance, they are particularly vulnerable
to adversarial attacks (Cao et al., 2019; Sun et al., 2020a;
Xiang et al., 2019). Because of the wide applications in
safety-critical fields, it is imperative to study the adversarial

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

robustness of point cloud recognition models.

Self-supervised learning (SSL) has been incorporated into
adversarial training (AT) in 2D image perception models
lately. It has shown great potential to enhance adversar-
ial robustness without requiring any additional data or la-
bels (Chen et al., 2020; Hendrycks et al., 2019). Given such
achievements, a natural question emerges: can we mimic
the application of SSL to improve adversarial robustness in
3D point cloud recognition? Such a label-free strategy is
strongly preferred due to the cost and difficulty of 3D point
cloud data annotation (Qi et al., 2021).

Summary of Our Contributions:

In this paper, we present a systematic analysis of the ad-
versarial robustness in 3D point cloud recognition using
self-supervisions on three representative architectures: a
multi-layer-perceptron (MLP) network (PointNet) (Qi et al.,
2017), a convolutional network (DGCNN) (Wang et al.,
2019), and a transformer-based network (PCT) (Guo et al.,
2020). Specifically, we use two strategies to integrate self-
supervised learning and adversarial training, including (1)
adversarial pre-training for fine-tuning (APF), which uses
the SSL tasks only for pre-training, and (2) adversarial joint
training (AJT), which jointly trains the SSL task with the
recognition task, as shown in Figure 1. To further study
the importance of self-supervised tasks for adversarial ro-
bustness, we select three representative SSL proxy tasks,
including 3D rotation prediction (Poursaeed et al., 2020), 3D
jigsaw (Sauder & Sievers, 2019), and autoencoding (Yang
et al., 2018). Our key observations are as follows:

• We show that pre-training on SSL tasks improves adver-
sarial robustness of the fine-tuned models. Unlike the
2D domain, where both APF and AJT have enhanced the
robustness, our study finds that only APF consistently
achieves robustness improvements in 3D. AJT does not
always help since the distributional gap between data for
SSL and recognition tasks will distract each other in AJT.
Evaluation results of various unforeseen attacks further
confirm such improvements by APF.

• We find that the convolutional network, i.e., DGCNN,
is more robust than the other architectures. Moreover,
3D jigsaw SSL task, which predicts the permutation of
3D point cloud patches, helps achieve stronger robust-
ness than the others. Both convolutional architecture and
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Figure 1. Overview of Our Analysis Methodology.

jigsaw SSL task enforce the model to learn better local
semantics. Intuitively, robust local features help limit the
propagation of adversarial effect from point-level input
perturbations to the model’s final output.

2. Analysis Methodology
In this section, we detail our adversarial robustness analysis
methodology. We first introduce the principal 3D point
cloud recognition architectures and the threat models used
in our study. We then introduce two ways to generalize and
improve AT using 3D point cloud SSL proxies.

2.1. 3D Point Cloud Recognition Models and Threats
We introduce the adopted model designs and the formula-
tions of threats to 3D point clouds below.

Model Variants. We use a shared multi-layer-perceptron-
based network PointNet (Qi et al., 2017), a convolutional
network Dynamic Graph CNN (DGCNN) (Wang et al.,
2019), and a transformer-based network Point Cloud Trans-
former (PCT) (Guo et al., 2020) as our primary backbone
architectures, denoted as Mθm . The classification head
Hθh parameterized with θh for these backbones is an MLP
and the segmentation head Hθh is a set of 1 × 1 convolu-
tions. We use Fθf parameterized with θf (θf := [θm; θh])
to represent the overall model architecture, consisting of
the stacked backboneM and recognition head H, where
F =M◦H. Given the input point cloud x, the model F
aims to predict the corresponding label y, where y = F(x).

Threats. We adopt the point shifting (PS) threat within `p
projected gradient descent (PGD) style attacks. We assume
a PS adversary is able to shift all existing points within a `p
norm ball:

xs+1 = Πx+S(xs + α · sign(∇xs
L(xs,y;F))) (1)

where xs is the adversarial example in the s-th iteration, Π
is the projection function to project the adversarial example
to the pre-defined perturbation space S, and α is the attack
step size.

2.2. Adversarial Training with Self-Supervisions
We first introduce the chosen 3D self-supervised learning
methods, followed by two strategies to incorporate these

pretext tasks in adversarial training.

3D Self-Supervised Learning. The primary goal of self-
supervised learning (SSL) is to learn effective feature rep-
resentations with unlabeled data. Given a pretext task Pt ,
the pre-training process is still conducted in a supervised
manner with self-generated data xt and label yt from pris-
tine data x, where (xt,yt) = Pt(x). Therefore, a target
loss function Lt(xt,yt;F tθt) will be minimized during the
optimization, where θt consists of the shared backbone pa-
rameters θm and customized branch parameters θc (i.e.,
θt := [θm;θc]). We utilize the following 3D SSL tasks in
our study.

• 3D Rotation (Poursaeed et al., 2020): Similar to the ro-
tation task in 2D vision (Gidaris et al., 2018), the data and
label are generated by rotating the original point clouds to
pre-defined angles η in the 3D space. Therefore, the prob-
lem is to correctly predict 3D rotation angles w.r.t. the input
point cloud.

• 3D Jigsaw (Sauder & Sievers, 2019): Different from the
jigsaw task in 2D vision (Noroozi & Favaro, 2016) which
is defined as a classification problem, 3D jigsaw solicits
a segmentation model. A point cloud is evenly divided to
k3 small cubes and shuffled to different positions. Points
inside each small cube are assigned to a label signaling its
original position. The problem, thus, is to correctly predict
the original cube position of each point.

• Autoencoder (Achlioptas et al., 2018; Yang et al., 2018):
An autoencoder utilizes an encoder z = E(x) to learn a
compact representation and a decoder D(E(x)) to recon-
struct the point cloud. We utilize different backbones as
the encoder E(·) and FoldingNet (Yang et al., 2018) as the
decoder D(·) due to its satisfactory performance. We use
three different positional encodings: plane, 3D sphere, and
3D gaussian in our experiments.

Adversarial Pre-training for Fine-tuning (APF). As in-
troduced in §1, adversarial training (AT) (Madry et al., 2017;
Shafahi et al., 2019; Wong et al., 2020) has been demon-
strated to be one of the most longstanding and practical
defenses. We thus enable AT in both pre-training and fine-
tuning stages:

arg min
θ

E(x,y)∼D

[
max
σ∈S
L(x+ σ,y,θ)

]
(2)

where L ∈ {Lt,Lf} for loss functions in pre-training (t)
and fine-tuning (f ) stages, σ is the adversarial perturba-
tions, and S represents its manipulation space. AT essen-
tially solves a min-max problem. In the inner loop, the
optimizer tries to find adversarial examples that maximize
the target loss, and the outer loop updates the network pa-
rameters to correctly recognize the generated adversarial
examples. In contrast, standard training (ST) is simply
arg minθ E(x,y)∼D [L(x,y,θ)].
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Table 1. Evaluation Results (%) of Adversarial Pre-training for Fine-tuning and Task Ensembles.
ModelNet40 ScanObjectNN ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

AT Baseline N/A 87.7 37.9 90.6 62.0 89.7 49.1 69.9 23.7 74.4 30.9 72.4 20.5 96.6 79.7 98.1 86.3 97.4 80.0

3D Rotation η = 6 87.2 48.0 91.4 63.6 90.2 50.7 69.1 24.5 75.7 32.9 72.6 20.6 96.8 79.0 97.7 84.9 97.2 80.4
η = 18 87.2 48.3 91.1 64.1 90.2 49.5 69.5 25.0 73.8 32.2 72.5 20.1 97.1 79.3 98.5 85.3 97.8 80.3

Adversarial
3D Rotation

η = 6 87.6 42.1 90.8 61.8 90.4 50.8 69.6 25.3 75.0 36.8 71.6 28.7 97.0 79.9 97.7 87.5 98.0 82.2
η = 18 87.4 45.7 90.9 62.9 90.4 50.1 69.3 24.5 75.0 36.3 73.1 26.9 97.0 79.7 98.0 88.2 97.4 83.7

k = 3 87.6 50.1 90.0 67.4 90.4 51.1 70.8 25.5 79.0 33.8 73.4 23.2 96.8 80.0 98.0 89.6 97.8 81.53D Jigsaw k = 4 87.6 50.9 90.1 65.3 90.3 50.2 70.2 25.4 76.2 35.3 73.8 24.6 96.7 80.2 98.0 89.0 97.7 81.9

k = 3 88.2 52.1 89.6 65.8 89.8 51.3 69.0 24.8 77.5 41.3 72.5 26.3 97.0 80.6 98.5 90.5 97.4 83.5Adversarial
3D Jigsaw k = 4 87.8 50.5 89.9 65.3 89.6 51.0 69.9 25.5 76.1 40.6 73.1 27.4 97.0 80.5 98.0 89.1 97.3 83.9

Autoencoder
sphere 87.4 50.0 89.9 62.8 90.2 50.7 69.9 25.1 76.1 36.0 71.3 24.1 97.0 80.5 98.2 86.8 97.1 80.1
plane 87.1 48.8 90.1 62.2 90.2 50.2 69.4 25.5 76.2 35.6 71.1 22.6 96.8 80.8 97.8 87.6 97.0 80.1

gaussian 87.4 48.9 90.8 63.3 89.7 50.3 69.7 23.8 75.6 35.8 71.3 24.8 96.8 80.5 97.8 86.4 97.1 80.1

Adversarial
Autoencoder

sphere 87.1 49.7 90.0 62.2 90.3 50.0 70.4 25.2 75.2 36.2 72.6 22.2 96.7 80.4 97.5 87.3 97.5 82.1
plane 86.9 46.6 89.7 61.8 89.7 50.0 69.2 24.0 75.6 38.0 73.3 21.6 97.0 80.6 98.0 86.1 97.7 82.5

gaussian 87.1 48.5 90.7 62.7 90.2 50.5 68.8 25.0 74.7 36.3 72.6 23.4 97.0 80.2 97.8 88.4 97.4 83.2

In the pre-training stage of APF, we leverage both standard
and adversarial training to get the pre-trained backbones
Mθm andMadv

θm
. Given a pre-trained backbone parameter-

ized by θm, in the second stage, we adversarially fine-tune
all θf := [θm;θh] for the recognition task, as illustrated in
Figure 1. The network branches at the penultimate vector
for the rotation task and the first global feature (Sun et al.,
2020b) for the jigsaw and autoencoder tasks since they use
the segmentation head.

Adversarial Joint Training (AJT). Besides pre-training
for fine-tuning, joint training is another way to apply SSL.
The objective function is formulated as:

arg min
θm;θh;θc

E(x,y)∼D

[
max
σ∈S
Lf (x+ σ,y,θf )

]
+ λ · Lt(xt,yt,θt)

(3)

where λ is a hyperparameter to balance the SSL and recong-
nition tasks. Two tasks share the same backbone θm with
two different branches, parameterized by θh and θc, respec-
tively. We also enable dual batch normalization (Xie et al.,
2020) in AJT for x and xt since they should belong to dif-
ferent underlying distributions. We use two model-agnostic
tasks, i.e., 3D rotation and jigsaw in AJT.

Similarly, in our AJT analysis, all Lt and Lf can be for-
mulated as cross-entropy loss. We set λ = 1 and leverage
the same branching point with APF. The whole network is
trained to predict the supervised task with the original head
and the SSL task with the auxiliary head (Figure 1).

3. Experiments and Results
We here present our experimental setups and results.

3.1. Evaluation Setups
Datasets. We leverage three datasets (D): ModelNet40 (Wu
et al., 2015) (40 classes), ModelNet10 (Wu et al., 2015) (10
classes), and ScanObjectNN (Uy et al., 2019) (15 classes)
throughout our experiments. For each point cloud, we ran-
domly sample 1024 points and normalize it to an edge-

length-2 cube ([−1, 1]) for experimentation. For SSL, we
randomly sample yt from the pre-defined label sets and fur-
ther generate xt based on yt in each iteration. Specifically,
we choose η = 6, 18 and k = 3, 4 for rotation and jigsaw
tasks, followed by the suggestion of Poursaeed et al. (2020)
and Sauder & Sievers (2019).

Adversary. As introduced in §2.1, we exploit 7-step and
200-step `∞ PGD attacks (Madry et al., 2017) targeting
the cross-entropy loss for adversarial training and testing,
respectively. We follow Sun et al. (2020b) to empirically
set the perturbation boundary ε = 0.05 (||σ||∞ ≤ 0.05).
We utilize PGD step size α = 0.01 and α = 0.005 in the
training and testing phases, respectively.

Training Details. All pre-trained and fine-tuned models in
APF are trained using Adam (Kingma & Ba, 2014). We use
batch sizes of 32 for PointNet and DGCNN, and 128 for
PCT. The initial learning rate is set to 0.001 for PointNet
and DGCNN, and 5× 10−4 for PCT. Both pre-training and
fine-tuning take 250 epochs, where a 10× decay happens at
the 100-th, 150-th, and 200-th epoch. We leverage the same
training setups in AJT. All experiments are done on 1 to 4
NVIDIA V100 GPUs (v10, 2020).

3.2. Self-Supervised Pre-training Helps Adversarial
Fine-tuning

We systematically evaluate all configurations in APF under
PS attack. As introduced earlier, we use standard and adver-
sarial training to get the pre-trained models. From Table 11,
we can make several interesting observations. First, we find
that our APF strategy generally enhances the adversarial ro-
bustness. The best-fine-tuned models achieve 14.2%, 5.4%,
and 2.2% robustness improvements in PointNet, DGCNN,
and PCT on ModelNet40, respectively. The enhancements
on the real-world dataset, ScanObjectNN, i.e., 1.8%, 10.4%,
and 6.9% in PointNet, DGCNN, and PCT, are also signifi-

1The 1-st and 2-nd highest accuracy among fine-tuned models
in each column are noted, and we use the same mark throughout
this paper.
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Table 2. Evaluation Results (%) of Adversarial Joint Training.
ModelNet40 ScanObjectNN ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

AT Baseline N/A 87.7 37.9 90.6 62.0 89.7 49.1 69.9 23.7 74.4 30.9 72.4 20.5 96.6 79.7 98.1 86.3 97.4 80.0

3D Rotation η = 6 86.8 45.0 91.2 60.7 89.5 44.3 67.8 24.3 74.2 37.8 72.3 20.3 96.6 79.0 98.1 86.3 97.8 73.8
η = 18 86.5 46.4 91.3 62.0 88.9 42.9 68.7 25.1 76.2 37.2 72.1 19.8 97.0 79.9 97.9 85.7 98.1 75.6

k = 3 87.6 42.5 91.0 62.3 90.2 43.1 69.4 25.5 77.1 38.9 72.1 20.7 96.8 79.8 98.4 87.9 97.7 76.83D Jigsaw k = 4 87.2 46.7 91.1 61.7 89.8 40.9 70.0 24.6 75.9 38.4 73.7 20.8 96.8 77.9 98.0 88.6 97.1 78.0

cant, which demonstrate the generality of APF. Second, we
find that DGCNN outstands to be the most robust architec-
ture, consistently achieving ∼15% stronger robustness than
the other two models on both ModelNet40 and ScanOb-
jectNN. Lastly, jigsaw-based APF offers more robustness
improvements than the other two methods while maintaining
slightly higher clean accuracy (CA). Specifically, jigsaw-
based APF, on average, further boosts DGCNN’s RA by
2.8%, 2.2%, and 2.7% on three datasets, respectively.

Insights. Different from 2D images that possess both tex-
ture and shape information, 3D point clouds naturally bias
towards shape. In 2D image space, it is widely recognized
that local and global features correspond to the texture and
shape information, respectively (Bui et al., 2020). Recent
studies have demonstrated that appreciation of global/shape
features can help improve model robustness on image clas-
sification (Chalasani et al., 2018). However, we find some
distinctions in point cloud recognition. As mentioned above,
PointNet with only global feature learning will be easily
affected by the perturbed points (Table 1). Due to the spar-
sity of point clouds, the local feature actually represents the
smoothness of the object’s surface. Thus, learning robust
local features is critical for correctly recognizing a perturbed
point cloud, as it limits the adversarial effect propagation to
the model output.

As summarized above, DGCNN achieves the strongest ro-
bustness under AT, attributed to the hierarchical usage of
EdgeConv (Wang et al., 2019). EdgeConv dynamically ag-
gregates local features by exploiting kNN. Such an aggrega-
tion method has the ability to calibrate the adversarial effect
in the local feature learning stage. Although transformer-
based architectures have gained tremendous visibility re-
cently (Dosovitskiy et al., 2020), we find that PCT does not
have a major robustness improvement compared to Point-
Net. Self-attention increases the capacity of the model ar-
chitecture, but it also enlarges the receptive field of the
model (Zhang et al., 2019). In PCT, each point can in-
fluence every other point’s feature, which will potentially
increase the model’s fragility (Xiang et al., 2020).

Moreover, we also find that jigsaw-based APF is the most
effective method to improve adversarial robustness, align-
ing well with our above insights. Jigsaw SSL makes the
model learn to reassemble the randomly displaced local
point clusters, where the model is enforced to learn the dis-
placed local features. Meanwhile, to correctly reconstruct

the point cloud, jigsaw SSL also requires the model to cap-
ture the global and holistic semantics. Nevertheless, rotation
and autoencoder-based pre-training methods focus more on
global feature learning. Therefore, we believe jigsaw-based
APF is a perfect candidate to strengthen the association
between local and global features in point cloud learning,
hence improving the adversarial robustness under APF.

3.3. Adversarial Joint Training Does not Always
Improve Robustness

We leverage two model-agnostic SSL tasks in AJT. As pre-
sented in Table 2, AJT can still enhance the robustness in
PointNet and DGCNN. For instance, AJT improves their RA
by 1.8% and 8.0% on ScanObjectNN, respectively. How-
ever, AJT overall cannot outperform APF in point cloud
recognition. Especially, we find AJT even degrades the RA
of PCT compared to the standard AT.

Insights. We find this also to be related to the natural charac-
teristic of point cloud data. Although SSL can help models
learn strong priors and context information, it is still a sep-
arate learning task. Rotated and disassembled images still
preserve similar local features to the original images since
the RGB values do not change, so that the auxiliary optimiza-
tion in AJT will not distract AT but help models learn robust
global features (Hendrycks et al., 2019). However, point
cloud models take point coordinates xyz as input. Rotated
and disassembled point clouds have significant variations in
their coordinates’ numeric values. Although we apply dual
batch normalization (Xie & Yuille, 2020) to migrate the
feature heterogeneous problems, such discrimination will
consequently distract model learning in AJT, and thus hurt
the RA performance. The usage of self-attention in PCT
will further expand this impact since it introduces a global
receptive field (Xiang et al., 2020).

4. Conclusion
In this work, we systematically explore the impact of self-
supervised learning (SSL) on the adversarial robustness in
3D point cloud recognition. We find tangible robustness
improvements by the adversarial pre-training for fine-tuning
strategy. We also experimentally show that robust local fea-
tures are critical to achieving robustness in 3D, explaining
the success of DGCNN and the jigsaw proxy task. Our re-
sults shed light for future research on designing more robust
models and SSL schemes for 3D point clouds.
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