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Abstract

As the representations output by Graph Neural
Networks (GNN5s) are increasingly employed in
real-world applications, it becomes important to
ensure that these representations are fair and sta-
ble. In this work, we establish a key connection
between fairness and stability and leverage it to
propose a novel framework, NIFTY (uNIfying
Fairness and stabiliTY), which can be used with
any GNN to learn fair and stable representations.
We introduce an objective function that simultane-
ously accounts for fairness and stability and pro-
poses layer-wise weight normalization of GNNs
using the Lipschitz constant. Further, we theoreti-
cally show that our layer-wise weight normaliza-
tion promotes fairness and stability in the result-
ing representations. We introduce three new graph
datasets comprising of high-stakes decisions in
criminal justice and financial lending domains.
Extensive experimentation with the above datasets
demonstrates the efficacy of our framework.

1. Introduction

Over the past decade, there has been a surge of inter-
est in leveraging GNNs for graph representation learning.
GNNss are used to learn powerful representations for down-
stream applications—e.g., predicting protein-protein inter-
actions (Huang et al., 2020), drug repurposing (Zitnik et al.,
2018), crime forecasting (Jin et al., 2020). As GNNs are
increasingly implemented in real-world applications, it be-
comes important to ensure that these models and their rep-
resentations are safe and reliable. Specifically, ensuring that
the model’s resulting representations are not perpetrating
undesirable discriminatory biases (i.e., fairness), and are
robust to attacks resulting from small perturbations to the
graph structure and node attributes (i.e., stability).
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Figure 1. NIFTY can learn fair and stable representations (i.e., in-
variant to the sensitive attribute value and perturbations to the graph
structure and non-sensitive attributes) by maximizing the similarity
between representations from diverse augmented graphs.

A myriad of GNN methods with various neighborhood
aggregation schemes have been developed recently (e.g.,
Kipf & Welling (2017); Hamilton et al. (2017); Xu et al.
(2018; 2019); Velickovic et al. (2019)). While these meth-
ods achieve state-of-the-art performance in tasks such as
node classification and link prediction, they can be prone
to discrimination and instability (Dai & Wang, 2021; Rah-
man et al., 2019; Bose & Hamilton, 2019). Since GNNs
compute node representations by propagating and aggregat-
ing neural messages along edges in graph neighborhoods,
nodes with similar sensitive attribute values are likely to
share similar representations leading to severe discrimina-
tory biases. While previous techniques study fairness (Dai
& Wang, 2021) and stability (Zhu et al., 2019) indepen-
dently, it remains an open question whether there is any
deeper connection between these properties, and if they can
be achieved simultaneously.

Present work. To tackle the problem of learning fair and
stable representations, we first identify a key connection
between fairness and stability. While stability accounts for
robustness w.r.z. random perturbations to node attributes
and/or edges, fairness accounts for robustness w.r.z. modifi-
cations of the sensitive attribute. We use the above connec-
tion to develop NIFTY to enforce fairness and stability in
the objective function as well as in the message passing step
of the GNN layers. Results show that NIFTY improves the
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fairness and stability of five GNNs by 92.01% and 60.87%
without sacrificing their predictive performances.

2. Preliminaries

Let G=(V, &, X) denote an undirected graph on nodes V
and= edges €. Let X={x1,...,xy} denote vectors corre-
sponding to the nodes in V, where x, R captures node
v’s attributes. Let ACRY % be the adjacency matrix where
A, =1 if there exists some edge between nodes u and v,
and otherwise 0. We use AV, to denote the immediate neigh-
bors of node u, i.e., Noy={ve€V|A,,=1}. Furthermore, let
I1,€{0,1}" denote the incidence vector which captures all
the edges incident on node w, i.e., I,,,=1 if an edge exists be-
tween nodes u and v, and otherwise 0. Finally, we introduce
b,, to capture all the information associated with node u, i.e.,
b, =[x,; I, denotes the concatenation of node attribute and
incidence vector corresponding to node u. We also gener-
ate an augmented graph G'=(V, &', X), i.e., for each node
we generate a corresponding node in the augmented graph
by slightly perturbing the attribute values, incident edges,
and/or modifying u’s sensitive attribute. For a GNN with
K layers, the representations for node w for each layer is
denoted as h}, - - hX, where z,=h’* is representation at
the last GNN layer. Analogously, Z,, denotes the output rep-
resentation of node v in G’. The (dis)similarity between two
node representations is given by a distance metric D : R¢ x
R? — R. Our goal is to learn an encoder ENC which maps
node u to its representation z,,, i.e., ENC(u)=z,. Lastly, a
classifier f maps the representation z,, to a class label g,,.

Graph Neural Networks. GNNs can be formulated as
message passing networks (Wu et al., 2020) specified by
trainable operators MSG, AGG, and UPD. In a K-layer
GNN, the operators are recursively applied on G, specifying
how messages are exchanged between nodes, aggregated,
and transformed to generate final node representations. A
message between a pair of nodes (u, v) in layer k is defined
as a function of hidden node representations from the previ-
ous layer as: m*, =MsG(h*~! h*~1). In AGG, messages
from N, are aggregated as: m*=AGG(mF |u € NV,,). In
UPD, the aggregated message m” is combined with h*~!
to produce u’s representation as: h* =UpPD(mF* h*—1).

Fairness and Stability. Our goal is to learn fair and stable
node representations. More specifically, the notions of
fairness and stability that we consider in this work are coun-
terfactual fairness and Lipschitz continuity, respectively.

Counterfactual Fairness: For graph representation learn-
ing, counterfactual fairness can be interpreted as node repre-
sentations output by encoders should be independent of the
sensitive attribute, i.e., changing node u’s sensitive attribute
value should not affect the node representations.

Definition 1. An encoder function ENC satisfies counter-

factual fairness if the following holds for any given node w:

ENC(u) = ENC(@?), (1)

where %° is a node in the augmented graph generated by
modifying u’s sensitive attribute values while keeping ev-
erything else constant.

Stability via Lipschitz Continuity: A function is stable ac-
cording to Lipschitz continuity if slightly perturbing any
given instance does not drastically change the output. In
graph representation learning, this notion entails small per-
turbations to node attributes and/or incident edges should
not drastically change the resulting representations.

Definition 2. An encoder function ENC is stable according
to the notion of Lipschitz continuity if:

[[ENC(@) — ENC(u)[|, < LI[bu = bullp,  (2)

where @ is a node in the augmented graph generated by
perturbing u’s attribute values and/or incident edges, b,, and
b, capture the attribute and incident edge information for
nodes w and @ respectively, and L is the Lipschitz constant.

3. Our Framework NIFTY

Next, we describe our framework NIFTY which aims to
generate fair and stable graph embeddings by enforcing
fairness and stability in the objective function as well as in
the architecture of the underlying GNN.

Problem formulation (Fair and Stable embeddings).
Given G = (V,E,X), NIFTY aims to generate embeddings
2z, € R that are counterfactually fair (Eq. 1) and stable to
attribute and structural perturbations of G (Eq. 2).

Fairness and Stability in the Objective Function. To in-
fuse fairness and stability in the objective function, we intro-
duce a triplet-based objective that maximizes the agreement
between the original graph and its counterfactual and noisy
views. To this end, we use Siamese networks to maxi-
mize this agreement, i.e., the augmented network neighbor-
hoods and attribute vectors of the same node should result
in the same embedding (Chen & He, 2020). Generating aug-
mented views of graph structure and attribute information is
key for the Siamese learning. We generate them using node-,
sensitive attribute-, and edge-level perturbations. Refer Ap-
pendix D for details. To learn embeddings that are invariant
to the sensitive attribute and stable against perturbations,
we train the GNN encoder ENC using the Siamese frame-
work (Bromley et al., 1994) and generate representations z.,
of the augmented graph at every iteration. By generating
augmented graphs, NIFTY can induce appropriate bias into
the underlying GNN to learn embeddings invariant to the
combination of counterfactual and random perturbations. A
predictor ¢ : R?—R9 consisting of a fully-connected layer
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is then used to transform and match the representations
with each other. Inspired by Grill et al. (2020), we define a
triplet-based objective that optimizes the similarity between
the graph and its augmented (i.e., counterfactual and noisy)
representations:

£, = Eu[5 (D(t(), 58(2) + D(t(2), s6(z) |, G)

where ¢(z,,) and ¢(2,,) are the transformed representations
of u and u, D is the cosine distance, and stopgrad (sg) pre-
vents gradients from being backpropagated. The sg signifies
that the node representation z,, is considered as constant
when operating on ¢(z,) and vice-versa. The overall objec-
tive function for NIFTY is: ming,,. 9,0, Eu [(1 — A)Lc] +
AL, where {0gnc, 04,65} denotes trainable parameters of
ENC, t, and classifier f, L. is the binary cross entropy loss,
and the expectation is taken over training nodes in G. The
regularization coefficient A controls the trade-off between
node classification loss £, and the tripled-based objective
L. Algorithm 1 givens an overview of NIFTY algorithm.

Fairness and Stability in the GNN Architecture.
NIFTY modifies the GNN’s routing of neural mes-
sages. Typically, a GNN layer is given by (Sec. 2):
h*=UPD(AGG(MsG(h =1 hk=1)jv € N,,),h*~1). Con-
sidering AGG a fully-connected neural layer and UPD a non-
linear activation function o, we rewrite the message-passing
step as: hf=c(WF ni-1+wk D oeN (u) h%~1), where
WP is the weight matrix associated with the neighbors of
node u and WP is the self-attention weight matrix at layer
k. Definition 2 entails that the Lipschitz constant L provides
an upper bound on how much u’s node embedding can
change. In fact, L represents the smallest value for which
Eqn. 2 in Def. 2 holds true. Leveraging this understanding,
NIFTY bounds the change in u’s embedding by normalizing
the encoder’s weight matrices. This is because of the slope-
restricted structure of the nonlinear activation function in the
UPD step (proof in Sec. 4). Using our derivations in Sec. 4,
we calculate the Lipschitz constant L of term W*h*~1 as
the spectral norm o of the weight matrix at each layer k.
We use L to normalize W% as: WE = Wk /o(WF). We
use this normalized weight matrix W¥ to modify the UPD
step: hi=c(W§ hi~'+Wp 3> ) hi™). Lipschitz
normalization has two advantages: 1) it bounds the
difference between embeddings of original and perturbed
node attributes; 2) it establishes a connection between
stability and counterfactual fairness such that similar inputs
should yield similar representations.

4. Theoretical Analysis of NIFTY

Next, we 1) prove that NIFTY’s embeddings are stable, 2)
provide a theoretical upper bound on unfairness of embed-
dings, and 3) show that downstream classifiers trained on
NIFTY’s embeddings are counterfactual fair.

Theorem 1 (NIFTY Stability). Given a non-linear activa-
tion function o that is Lipschitz continuous, the represen-
tations learned by our framework NIFTY are stable i.e.,

K
[[ENc(@) —ENc(u)ll, < TT IIWEllp/I(bu =bu)llp, )
k=1

where @ is a node in the augmented graph generated by
perturbing u’s attribute values and/or incident edges, by,
and b,, capture all attribute and edge information of nodes
u and @, and W¥ is u’s self-attention weight at layer k.

Proof is provided in the Appendix A.

Theorem 2 (NIFTY Counterfactual Fairness). Given a
non-linear activation function o that is Lipschitz continu-
ous and a binary sensitive attribute s, the (counterfactual)
unfairness of NIFTY s representations can be bounded as:

K
|[Enc (@) — Enc(u)ll, < [T IIWEll, ®)
k=1

where 4° is a node in the augmented graph which is gen-
erated by modifying (flipping) the value of the sensitive at-
tribute (s) of node u while keeping everything else constant.

Proof is provided in Appendix B.

Proposition 1 (Counterfactual Fairness of Downstream
Classifier). If NIFTY s representations satisfy counterfac-
tual fairness, then a downstream classifier f : z,—1, using
those representations also satisfies counterfactual fairness.

Proof is provided in the Appendix C.

5. Experiments

Next, we present experimental results for NIFTY framework.
We first describe datasets designed to study fair and stable
network embeddings and then outline experimental setup.

Datasets. We construct three new datasets. 1) The German
credit graph has 1,000 nodes representing clients in a Ger-
man bank connected based on the similarity of their credit
accounts. The task is to classify clients into good vs. bad
credit risks considering clients’ gender as the sensitive at-
tribute (Dua & Graff, 2017). 2) The Recidivism graph has
18,876 nodes representing defendants who got released on
bail at the U.S. state courts between 1990-2009 (Jordan &
Freiburger, 2015). Defendants are connected based on the
similarity of past criminal records and demographics, where
the goal is to classify defendants into bail (i.e., unlikely to
commit a crime if released) vs. no bail (i.e., likely to com-
mit a crime) considering race information as the protected
attribute. 3) The Credit defaulter graph has 30,000 nodes
representing individuals connected based on the similarity
of their spending and payment patterns (Yeh & Lien, 2009).
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Figure 2. Unfairness and instability error rates for five GNNs and

their NIFTY counterparts. NIFTY-enhanced GNNs give fairer and
more stable predictions than their unmodified counterparts.

The task is to predict whether an individual will default on
the payment or not while considering age as the sensitive
attribute. See Appendix E for details.

Metrics. We use AUROC and F1-score to measure GNN'’s
predictive performance. To quantify group fairness, we use
statistical parity (Agp), and equal opportunity (Agp) as
defined in Dai & Wang (2021). To measure counterfactual
fairness, we define the unfairness score as the percentage of
test nodes for which predicted label changes when the node’s
sensitive attribute is flipped. Finally, the instability score rep-
resents the percentage of test nodes for which predicted label
changes when random noise is added to node attributes.

GNN methods. We incorporate NIFTY into five GNN meth-
ods: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), Jumping Knowledge (JK) (Xu et al., 2018),
GIN (Xu et al., 2019), and InfoMax (Velickovi¢ et al., 2019).
Additionally, we consider two baseline methods: FairGCN
(Dai & Wang, 2021) and RobustGCN (Zhu et al., 2019); all
hyperparameters are set following the authors’ guidelines.
We use stop-gradient operation for training the Siamese net-
works (Chen & He, 2020). We set regularization coefficient
to A=0.6 and conduct a sensitivity analysis into the effect
of A on NIFTY’s performance. See Appendix F for details.

Results: NIFTY improves fairness and stability. Across
three datasets and five GNNs, NIFTY-modified GNNs learn
fairer and more stable embeddings than unmodified GNNs
(Fig. 2). On average, NIFTY improves stability and fairness
of GNNs by 60.87% and 92.01%, respectively. Further,
NIFTY can promote fairness and stability of GNNs without
sacrificing their predictive performance, as evident by AU-
ROC and F1-scores in Table 2. Finally, NIFTY outperforms
baseline FairGCN and RobustGCN methods by 62.07% and
57.26% on four fairness and stability metrics (Table 1).

Results: NIFTY achieves group fairness. While NIFTY
aims to capture counterfactual fairness, it remarkably im-
proves group fairness of GNNGs as it reduces information on
protected attributes and makes the multi-objective problem
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Figure 3. The effects of regularization on the performance of
NIFTY-GIN for the German credit graph (see Fig. 4 for other
datasets) where NIFTY achieves a near-perfect stability and fair-
ness on the downstream task over a wide range of regularization.

of satisfying fairness and stability more tractable. Across
three datasets, five GNNs, and two group fairness metrics,
NIFTY achieves 43.56% lower Agp and 34.70% lower
Ago, suggesting that in NIFTY, a node’s chance of be-
ing represented as a particular point in the embedding space
does not depend on its membership in a protected group.

Results: Fairness vs. stability vs. accuracy. As we in-
crease regularization coefficient A in NIFTY (Fig. 3), we
find that the error rates for counterfactual fairness and sta-
bility steadily decrease. Even with a modest amount of
regularization (A=0.1), NIFTY achieves a 94.29% improve-
ment in unfairness. As expected, a strongly regularized
NIFTY model takes a hit on its predictive performance.

Results: Ablation study. We conduct ablations on two key
NIFTY’s components, namely the objective function and
the Lipschitz layer-wise normalization. Results show that
both components are necessary to generate fair and stable
embeddings (Table 3). In particular, we observe a 90.7%
improvement in fairness of NIFTY-GCN as compared to
vanilla GCN, providing empirical evidence for our theoret-
ical analysis that the Lipschitz normalization can improve
both fairness and stability of graph embeddings (Sec. 4).

6. Conclusions & Future Work

We propose NIFTY, a unified framework that exploits a
novel connection between counterfactual fairness and sta-
bility to learn network representations that are both fair and
stable. NIFTY uses a two-level strategy to modify an exist-
ing GNN at the architectural and the objective function level.
Results on new graph datasets from criminal justice and fi-
nancial lending domains show that NIFTY improves fairness
(counterfactual and group fairness) and stability without sac-
rificing predictive performance. This work paves way for
several future directions, e.g., extending NIFTY to generate
fair and stable representations of other graph components
(e.g., edges, subgraphs) and to cater to other downstream
tasks (e.g., link prediction, graph classification).
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