
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Stateful Performative Gradient Descent

Anonymous Authors1

Abstract
A recent line of work has focused on training ma-
chine learning (ML) models in the performative
setting, i.e. when the data distribution reacts to
the deployed model. The goal in this setting is
to compute a model which both induces a favor-
able distribution and performs well on the induced
distribution, thereby minimizing the test loss. Pre-
vious work on finding an optimal model assumes
that the data distribution immediately adapts to
the deployed model. In practice, however, this
may not be the case, as the population may take
time to adapt to the model. In this work, we
propose an algorithm for minimizing the perfor-
mative loss even in the presence of these effects.

1. Introduction
A recent line of work initiated by (Perdomo et al., 2020) has
sought to study how to effectively train machine learning
(ML) models in the presence of performative effects. Perfor-
mativity describes the scenario in which our deployed model
or algorithm effects the distribution of the data or popula-
tion which we are studying. Such effects can be expected
when our model is used to make consequential decisions
concerning the population, e.g. if we deploy a classifier for
automatic disease diagnosis in a clinical setting. As ML
becomes ever more ubiquitous across fields, considering
these performative effects also grows in importance.

The goal of model training under performative distribution
shift is to minimize the model’s loss on the distribution it
induces. Recently, (Izzo et al., 2021) proposed a “meta-
algorithm” (performative gradient descent or PerfGD) to
accomplish this when the induced data distribution depends
only on the deployed model. This amounts to assuming that
the data distribution immediately adapts to the deployed
model, irrespective of any other conditions. In practice, such
a model of performative effects may be overly simplistic. It

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

is likely that the induced distribution will depend not only
on the deployed model, but also some notion of the “state”
that the population was in when the model was deployed.
This notion was introduced by (Brown et al., 2020), who
also gave algorithms for finding locally stable models in
this setting. A notion of optimality in this setting is the
minimization of the long-term performative loss—that is,
finding a model which minimizes the average risk over an
infinite time horizon, assuming that we keep deploying that
same model.

1.1. Our contributions

In this work, we introduce an algorithm for minimizing the
performative risk in the stateful setting of (Brown et al.,
2020). Our algorithm is similar in spirit to that of (Izzo
et al., 2021), in that it amounts to estimating an appropriate
gradient and using it to perform gradient descent. However,
unlike (Izzo et al., 2021), we no longer have even direct
sample access to the distribution that we care about (the
“long-term” induced distribution), and this added technical
challenge makes previous algorithms for optimizing the
performative risk ineffective. Indeed, the only way to ap-
ply previous approaches directly is to wait for many time
steps after each model deployment so that the induced dis-
tribution stabilizes to its long-term limit. Our algorithm
overcomes this limitation by “simulating” waiting, with-
out actually needing to do so. We show theoretically that
this method accurately captures the behavior of the long-
term distribution. Experiments confirm our theory and also
show its improvement over existing methods which are not
specifically adapted to the stateful setting.

1.2. Related work

(Perdomo et al., 2020) introduced the performative predic-
tion framework to the ML community. They gave two sim-
ple algorithms—repeated risk minimization (RRM) and re-
peated gradient descent (RGD)—which converge to a stable
point.

(Brown et al., 2020) introduced the “stateful” extension of
performative distribution shift and showed that the RRM
and RGD procedures introduced by (Perdomo et al., 2020)
converge to long-term stable points.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Stateful Performative Gradient Descent

(Izzo et al., 2021) gave the first method (PerfGD) for com-
puting the performative optimum. Their method assumes
that the induced distribution belongs to a known parame-
terized family such as a Gaussian with fixed variance, but
the dependence of the parameter (in this case the mean) on
the model is unknown. They showed that estimating the
gradient of the performative loss reduces to estimating the
derivative of this parameter with respect to the deployed
model, then used this to do (approximate) gradient descent
on the performative loss. Under convexity assumptions on
the performative loss, they showed that PerfGD converges
to an approximate minimizer.

(Miller et al., 2021) also studied optimizing the (state-
less) performative loss. The authors quantified when the
performative loss is convex and propose using black-box
derivative-free optimization methods to find the performa-
tive optimum.

A related line of work studies the setting of strategic classifi-
cation (Hardt et al., 2015), which is a subclass of the general
performative setting. In this setting, it is assumed that indi-
vidual datum react to a deployed model by a best-response
mechanism, inducing a population-level distribution shift.
(Dong et al., 2017) considered optimizing the performative
risk in an online version of this problem and for a certain
class of best-response dynamics.

Lastly, the original performative optimization problem can
be thought of as a derivative-free optimization (DFO) (Flax-
man et al., 2005) problem with a noisy function value oracle.
In the stateful case, however, we no longer even have an
unbiased noisy oracle for the function we wish to optimize
(the long-term performative risk), making black-box DFO
algorithms ineffective.

2. Problem setup and notation
We consider a generalization of the original performative
prediction problem (Perdomo et al., 2020). Rather than
having the distribution map D depend only on our model
parameters θ, we instead let the distribution observed at
time t (denoted ρt) depend on both our deployed parameters
θt and the previous distribution ρt−1:

ρt = D(θt, ρt−1).

Note that this setting is strictly more general than the origi-
nal setup, and captures the fact that in practice, it is unlikely
that the population we are modeling will immediately snap
to a new distribution upon deployment of a new model. In
general, it will take the distribution some time to adapt. This
generalization was introduced by (Brown et al., 2020), who
referred to it as “stateful” performativity.

Under reasonable regularity conditions on D, if we de-
fine θt ≡ θ for all t, then there exists a limiting distri-

bution D∗(θ) = limt→∞ ρt. (See Claim 1 of (Brown et al.,
2020) for sufficient conditions.) That is, D∗(θ) describes
the limiting distribution if we continue to deploy θ for all
time steps t. If we define the long-term performative loss
L∗(θ) = ED∗(θ)[`(z; θ)], then a sensible goal is to compute
the long-term optimum

θ∗OPT
∆
= argmin

θ∈Θ
L∗(θ),

where Θ is some set of admissible model parameters. This
is similar to the problem addressed in (Izzo et al., 2021),
except now we do not even have direct sample access to D∗.

For simplicity, we will restrict our attention to the case
where ρt is a Gaussian with fixed covariance Σ. (We re-
mark that our techniques should be viewed more as a “meta-
algorithm” whose details can easily be generalized to other
parametric distributions.) In this setting, ρt is completely
determined by its mean µt ∈ Rd, and rather than the distri-
bution map D, we can equivalently consider the mean map
m, where

µt = m(θt, µt−1).

We then have ρt = N (m(θt, µt−1),Σ). Analogously to
the long-term distribution assumption, we will assume that
for every fixed θ and any starting µ, there is a long-term
mean µ∗(θ) = limk→∞mk(θ, µ), where m0(θ, µ) = µ
and mk(θ, µ) = m(θ,mk−1(θ, µ)) for k ≥ 1.

We define the decoupled performative loss L(θ, µ)
∆
=

EN (µ,Σ)[`(z; θ)]. Given a fixed value of µt−1, the perfor-
mative loss when we deploy θt at time t can be written
as

Lt = L(θt,m(θt, µt−1)).

Lastly, we will use ∇if to denote the gradient of a func-
tion f with respect to its i-th argument. So for instance,
∇1L(θ;m(θ, µt)) means the gradient of L(θ;m(θ, µt))
only with respect to the θ appearing in the first argument
(before the semicolon) even though θ appears in L in the
second argument as well.

2.1. Previous algorithms and their limitations

RRM and RGD (Brown et al., 2020) showed that RRM
converges to a stable point in the long run. In general,
since the stateless performative problem is a subclass of the
stateful one, we can find examples where a stable point can
be arbitrarily far from an optimal point. (See §2.2 of (Izzo
et al., 2021).)

Naive PerfGD If we use the one-step mean m(θ, µ) as
a surrogate for the long-term mean, then we can naively
apply PerfGD from (Izzo et al., 2021). That is, if we define
L(θ;µ) = L(θ,m(θ, µ)), then we apply the update

θt+1 = θt − η∇1L(θt;µt).

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Stateful Performative Gradient Descent

We will see a toy example in the next section where this
method provably fails to converge to the long-term optimum.
Intuitively, this is because naive PerfGD only takes into
account the short-term impact of θ. It does not account for
the impact that θt will have on the loss moving from time
t+ 1 to t+ 2 through µt.

Black-box derivative-free optimization (DFO) Black-
box DFO seeks to optimize a function given only a function
value oracle and no direct access to e.g. gradients or higher-
order derivatives of the function to be optimized (Flaxman
et al., 2005). The non-stateful performative prediction set-
ting is indeed a special case of this general problem, and
black-box DFO algorithms can obtain reasonable results for
non-stateful performative prediction in some cases (Miller
et al., 2021). However, in the stateful performative setting,
we no longer even have an exact function value oracle for
the long-term performative loss, so we expect black-box
DFO methods to have degraded performance (if they work
at all).

3. Our algorithm: Stateful PerfGD
Our algorithm takes the same approach as the original
PerfGD of (Izzo et al., 2021). That is, we estimate the
(long-term) performative gradient and then use this estimate
to do approximate gradient descent. As we no longer have
direct sample access to the distribution we care about (the
long-term distribution), the steps needed to estimate the
long-term performative gradient are different from (Izzo
et al., 2021), and the error analysis is more involved. Below
we give the precise steps for computing our estimate.

3.1. Algorithm description

At time t, we propose the estimate

∇̂L∗t =

∫
∇θ`(z; θt) p(z;µt) dz

+

∫
`(z; θt)

d̂mk

dθ

>

∇µp(z;µt) dz, (1)

d̂mk

dθ
= ∂̂1m ·

1− (∂̂2m)k

1− ∂̂2m
(2)

where p(·;µ) is the density for a Gaussian random variable
with mean µ and variance Σ, and ∂̂im are estimates for
∂im(θt, µt) obtained via finite difference approximations
(Algorithm 1). See Appendix A for derivations of these
quantities and of Algorithm 1.

4. Approximation guarantees
In the simple case where m(θ, µ) = δµ∗(θ) + (1 − δ)µ,
we can bound the error of our approximation for dµ∗/dθ.

Algorithm 1 Estimating ∂im
Require: Estimation horizon H
ϕs ← [θ>s , µ

>
s−1]> for all s ≤ t

∆µ← [µt−1 − µt, . . . , µt−H − µt]
∆ϕ← [ϕt−1 − ϕt, . . . , ϕt−H − ϕt]
∇̂m

>
← (∆µ)(∆ϕ)†

return ∇̂m = [∂̂1m, ∂̂2m]

In this case the true ∂im do not depend on µ, so we have
d̂mk

dθ = dmk

dθ and by taking k arbitrarily large, we get an
arbitrarily good approximation for dmk/dθ with oracles for
∂im. Any errors in estimating ∂̂im due to finite difference
approximations do not change this result.
Proposition 1. Suppose that we can estimate the derivatives
∂im to error ε: |∂̂im− ∂im| ≤ ε. Further suppose that µ∗

has bounded derivative |dµ∗/dθ| ≤M . Let d̂mk

dθ be given

by Eq. (2). Then error Ek =

∣∣∣∣ d̂mk

dθ −
dµ∗

dθ

∣∣∣∣ is bounded by

Ek = O
([

M

δ2
−
{
k(1− δ)k−1

δ

}]
ε+M(1− δ)k

)
.

In particular, for 0 < δ < 1, as k → ∞, we have Ek .
Mε/δ2 → 0 as our estimates ∂̂im become exact (ε→ 0).

5. Examples and experiments
In this section, we analytically classify the shortcomings of
the naive PerfGD method for the stateful setting. We follow
up with experiments for all of the relevant methods, showing
stateful PerfGD’s improvements over existing algorithms.
Throughout, the point loss is `(z; θ) = −zθ, so L(θ, µ) =
−µθ. We take the parameter space to be Θ = [−5, 5]. For
details on the specific constants and hyperparameters used
in the experiments, refer to Appendix D.

5.1. Example 1: Linear m

First, we take the mean update function to be

m(θ, µ) = δµ∗(θ) + (1− δ)µ, µ∗(θ) = a0 + a1θ

for some fixed δ ∈ (0, 1). We can exactly classify the
long-term optimal θ as well as the point to which PerfGD
converges. In the following two propositions, we assume
that the stated parameter values lie in Θ.
Proposition 2. When a1 < 0, the long-term optimal point
is θOPT = −a0/2a1.

Proposition 3. If naive PerfGD converges, then it converges
to θ = −a0/(1 + δ)a1.

Note that when a0 6= 0, the two values in the above propo-
sitions are equal iff δ = 1, which is indeed the stateless

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Stateful Performative Gradient Descent

performative case. The upshot is that naive PerfGD is too
myopic. It optimizes a “short-term” performative loss, and
fails to reach the long-term optimum as a result.

Figure 1 below compares the performance of gradient de-
scent with approximation (1) (labeled Stateful PerfGD in
the plot) with several other algorithms. RGD refers to the al-
gorithm of (Perdomo et al., 2020) for finding performatively
stable points. FLX refers to the black-box DFO algorithm
of (Flaxman et al., 2005); “internal” refers to the internal
estimate of the algorithm, rather than the actual (perturbed)
query points. Naive PerfGD refers to the procedure dis-
cussed in Section 2.1.

0 10 20 30 40 50 60
Iteration

1.00

1.25

1.50

1.75

2.00
Parameter movement

Long-term OPT
Long-term naive PerfGD
Stable point
RGD
FLX internal
Naive PerfGD
Stateful PerfGD

Figure 1. Performance of various algorithms with linear m. The
shaded region shows standard error of the mean over 50 trials. The
goal is to converge to the long-term optimum θOPT (orange line).
By explicitly taking into account stateful performative effects, our
algorithm is the only method which reaches θOPT.

5.2. Example 2: Non-linear m

To test the method on a more challenging problem and see

the effects of the approximation d̂mk

dθ , we alter the first toy
example so that the rate of convergence to the long-term
mean depends on the current mean. In particular, we take

m(θ, µ) = δ|µ|µ∗(θ) + (1− δ|µ|)µ,

with µ∗(θ) = a1θ+a0 as before. In this case, the long-term
performative loss and optimal point are the same as before,
since we still have mk(θ, µ) → µ∗(θ). However, ∂im are
no longer constants. We have

∂1m(θ, µ) = δ|µ|a1,

∂2m(θ, µ) = sgn(µ)(ln δ)δ|µ|[µ∗(θ)− µ] + (1− δ|µ|).

The approximation of dmk/dθ from (2) is no longer exact
even if we had oracles for ∂im. Nevertheless, we see that
the approximation (1) is good enough to reach θOPT.

5.3. Discussion

The results in both the simple linear and more complicated
nonlinear cases are similar. RGD converges to a performa-
tively stable point as expected, which in this case is far from

0 10 20 30 40 50 60
Iteration

1.5

2.0

2.5
Parameter movement

Long-term OPT
Stable point
RGD
FLX internal
Naive PerfGD
k = 100

Figure 2. Performance of various algorithms with nonlinear m.
The shaded region shows standard error of the mean over 50 trials.
Even in the more challenging case with non-constant ∂im, stateful
PerfGD is able to converge to θOPT.

θOPT. Flaxman et al.’s algorithm also performs poorly as
it assumes access to an exact function value oracle rather
than the “biased” oracle we have in the stateful case. Naive
PerfGD gets somewhat closer to θOPT but cannot converge
completely due to its myopic nature. Because it explicitly
takes into account stateful effects, the approximation (1) is
able to converge to θOPT.

6. Conclusion
We considered the stateful performative setting and showed
how to optimize the long-term performative risk under para-
metric assumptions on the data. We give a theoretical bound
on the error of our approximation for relevant derivatives,
and we verify empirically that our method is able to over-
come the more complicated stateful performative dynamics
and find θOPT, whereas existing methods not tailored to this
situation fail.

There are a number of interesting directions for future work.
The most obvious is extending the guarantees of our algo-
rithm to more general classes of parametric dynamics. A
related goal is to modify our method to work when the state-
ful performative distribution is a mixture of the long-term
and current distribution, rather than just a mixture of means.
Simply applying the current meta-algorithm on mixtures of
parametric distributions is a possibility, but empirically we
have found it difficult to estimate the required parameters
(e.g. individual means and mixture weights) to sufficient
accuracy for this to be effective. In addition, while mini-
mizing the long-term performative risk is a sensible goal,
other goals can also be considered—for instance, we can
attempt to minimize the regret over the whole time horizon.
Lastly, our current method works in the batch setting where
we have enough samples to accurately estimate population-
level quantities. Developing methods that can work in a
stochastic/limited sample regime is also of interest.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Stateful Performative Gradient Descent

References
Brown, G., Hod, S., and Kalemaj, I. Performative prediction

in a stateful world, 2020. ISSN 23318422.

Dong, J., Roth, A., Schutzman, Z., Waggoner, B., and Wu,
Z. S. Strategic classification from revealed preferences,
2017.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. On-
line convex optimization in the bandit setting: Gradient
descent without a gradient. SODA, 2005.

Hardt, M., Megiddo, N., Papadimitriou, C., and Wootters,
M. Strategic classification, 2015.

Izzo, Z., Ying, L., and Zou, J. How to Learn when Data
Reacts to Your Model: Performative Gradient Descent.
Technical report, 2021.

Miller, J., Perdomo, J. C., and Zrnic, T. Outside the Echo
Chamber: Optimizing the Performative Risk. Technical
report, 2021.

Perdomo, J. C., Zrnic, T., Mendler-Dünner, C., and Hardt, M.
Performative Prediction. arXiv:2002.06673 [cs, stat], apr
2020. ISSN 23318422. URL http://arxiv.org/
abs/2002.06673.

A. Derivation of stateful PerfGD
The long-term performative loss is given by

L∗(θt) =

∫
`(z; θt)p(z;µ

∗(θt)) dz.

Its gradient is therefore given by

∇L∗(θt) =

∫
∇θ`(z; θt) p(z;µ∗(θt)) dz

+

∫
`(z; θt)

dµ∗

dθ

>
∇µp(z;µ∗(θt)) dz.

The general form of our gradient estimate (1) arises by

substituting µt for µ∗(θt) and d̂mk

dθ for dµ
∗

dθ .

The derivation for Algorithm 1 is as follows. For each time t,
let ϕt = [θ>t , µ

>
t−1]>, and define m(ϕt) = m(θt, µt−1) =

µt. By Taylor’s theorem, we have

m(ϕt)−m(ϕs) ≈ ∇m(ϕs)
>(ϕt − ϕs). (3)

then we can vectorize equation (3) and obtain

∆µ ≈ ∇m(ϕt)
>∆ϕ =⇒ ∇m(ϕt)

> ≈ (∆µ)(∆ϕ)†.

The expression (2) for d̂mk

dθ arises as follows. Observe that

d

dθ
mk(θ, µ) =

d

dθ
[m(θ,mk−1(θ, µ))]

= ∂1m(θ,mk−1(θ, µ)) (4)

+ ∂2m(θ,mk−1(θ, µ)) · d
dθ
mk−1(θ, µ).

Here if m(·, ·), µ ∈ Rd and θ ∈ Rp, then dmk/dθ, ∂1m ∈
Rd×p and ∂2m ∈ Rd×d. Note that if we expand this for-
mula, dmk/dθ depends only on the first-order derivatives
∂1m and ∂2m evaluated at θ and mi(θ, µ) for i < k. In
general, we cannot know mi(θ, µ) for i > 1 except by de-
ploying θ for several steps. If the mean changes slowly,
however, then we can just substitute µ for each of these
quantities. That is, we assume that dmk

dθ ≈ ∂1m(θ, µ) +

∂2m(θ, µ) · dm
k−1

dθ .

Because we do not change the points at which we are evalu-
ating ∂im during each iteration of our approximation, the

final output d̂mk

dθ actually has the closed form (2). This
formula can easily be shown via induction.

We now find ourselves in one of two scenarios. If the
mean does indeed adapt slowly, then the approximation
mi(θ, µ) ≈ µ will be good for small values of i, and we can
thus get a good estimate of dm

k

dθ . On the other hand, if the
mean adapts quickly, then we can actually deploy θ for a
few steps to get a good estimate for µ∗(θ) and then proceed
with the usual PerfGD.

B. Proofs for §4
Proof of Proposition 1. We start by decomposing

Ek ≤

∣∣∣∣∣ d̂mk

dθ
− dmk

dθ

∣∣∣∣∣︸ ︷︷ ︸
E1

k

+

∣∣∣∣dmk

dθ
− dµ∗

dθ

∣∣∣∣︸ ︷︷ ︸
E2

k

and proceed by bounding each Eik separately.

We first bound E2
k . For notational convenience, let δ̄ =

1 − δ. It can be shown via induction that mk(θ, µ) =
(1− δ̄k)µ∗(θ) + δ̄kµ. It follows that

E2
k =

∣∣∣∣(1− δ̄k)
dµ∗

dθ
− dµ∗

dθ

∣∣∣∣ ≤Mδ̄k.

To bound E1
k , we first observe that if d̃mk

dθ is given by (2)

with the true partials ∂im used, then d̂mk

dθ = dmk

dθ . (This
is due to the fact that m is linear in µ and will not be true

in general.) We therefore have E1
k =

∣∣∣∣ d̂mk

dθ −
d̃mk

dθ

∣∣∣∣. Some

http://arxiv.org/abs/2002.06673
http://arxiv.org/abs/2002.06673

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Stateful Performative Gradient Descent

simple algebra using the recursive formula (4) for d̂mk

dθ and
d̃mk

dθ yields

E1
k = O

([
M

δ2
+

1

δ
−
{
k(1− δ)k−1 + (1− δ)k

δ

}]
ε

)
.

Combining this with the bound on E2
k yields the desired

result.

C. Proofs for §5
Proof of Proposition 2. It is easy to check that in this case
the corresponding long-term mean is µ∗(θ) = a0 + a1θ,
which implies that L∗(θ) = −θ(a0 + a1θ). Assuming that
a1 < 0, we have θOPT = −a0/2a1. Note that the long-term
mean in this case is µOPT = a0/2.

Proof of Proposition 3. First, since L(θ;µ) = −θ(δa1θ +
δa0 + (1− δ)µ), we have

∇1L(θ;µ) = −(2δa1θ + δa0 + (1− δ)µ).

If naive PerfGD converges, then we have the system of
equations

∇1L(θ;µ) = −(2δa1θ + δa0 + (1− δ)µ) = 0

m(θ, µ) = δ(a0 + a1θ) + (1− δ)µ = µ.

Solving for µ and θ yields µ = δa0/(1 + δ) and θ =
−a0/(1 + δ)a1, as desired. We remark that this is equal to
θOPT if δ = 1, in which case we are back in the original
“non-stateful” performative setting.

D. Experiment details
We use the population quantity m(θ, µ) in our algorithms
rather than estimating it as a sample mean. We can always
make our sample large enough so that this is not a problem,
and we leave analysis of sample complexity for future work.

In both experiments, all of the algorithms used a learning
rate of 0.1 for T = 60 steps. We set k = 100 in the
approximation (1) used for stateful PerfGD. Both stateful
and naive PerfGD used the entire history to estimate ∂im
via finite differences. The query perturbation size for FLX
was 0.1.

For the linear m experiment (§5.1), we set a0 = 1, a1 =
−0.5, and δ = 0.7.

For the nonlinear m experiment (§5.2), we set a0 = 2,
a1 = −0.8, and δ = 0.7.

