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Abstract
We consider counterfactual explanations for
privacy-preserving support vector machines
(SVM), where the privacy mechanism that pub-
licly releases the classifier guarantees differen-
tial privacy. While privacy preservation is essen-
tial when dealing with sensitive data, there is a
consequent degradation in the classification ac-
curacy due to the introduced perturbations in the
classifier weights. Therefore, counterfactual ex-
planations need to be made robust against such
perturbations in order to ensure, with high con-
fidence, that the explanations are valid. In this
work, we suitably model the uncertainties in the
SVM weights and formulate the robust counter-
factual explanation problem. Then, we study op-
timal and efficient suboptimal algorithms for its
solution. Experimental results illustrate the con-
nections between privacy levels, classifier accu-
racy, and the confidence levels that validate the
counterfactual explanations.

1. Introduction
Despite their efficiency in solving complex problems, ma-
chine learning (ML) algorithms and models are seldom
value-neutral to the extent that they include social and ethi-
cal values. Even when such values are integrated into the
models they may be mandated by regulatory frameworks,
such as traditional laws or policy documents. This paper
aims to illustrate the relational nexus between social and eth-
ical values in a technical context. This is done by focusing
on three values advocated by the General Data Protection
Regulation (GDPR) (Reg, 2016), namely, explainability,1

privacy,2 and accuracy.3 What becomes apparent when

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1References to this social value can be found in Recital 71.
2References to this social value can be found in Article 25.
3References to this social value can be found in Article 5(1)(d)

as expanded upon by the Article 29 Data Protection Working
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Figure 1. Illustration for the relationship between accuracy, privacy,
and explainability considered in this work.

attempting to transform the above social and ethical values
from the natural language of the law into the mathematical
language of ML algorithms is that this may be challenging
and even technically unattainable. The above social and
ethical values have been chosen as their transformation into
ML rules clearly illuminates the challenge of aligning these
competing social and ethical values promoted by the law
into a technical format, a conclusion being that the simul-
taneous promotion of all these three values is potentially
mathematically unattainable.

Figure 1 gives an overview on how the three mentioned so-
cial values are related within this work: Accuracy is targeted
when learning an SVM classifier from a dataset. Privacy
is guaranteed through the privacy preserving mechanism.
The explainability of predictions is done by constructing
counterfactual explanations for each specific data instance.
Counterfactual explanations (Sandra Wachter, 2018; Mol-
nar, 2019) is a class of post hoc explainability methods that
quantify the necessary changes to a considered data instance
to change its classification.

In this work, we will propose counterfactual explanations
that exploit the characteristics of the SVM classifier as well
as the applied privacy mechanism. The privacy mechanism
proposed in (Rubinstein et al., 2012) perturbs the SVM
weights through additive Laplace noise. As a result, privacy

Party (Guidelines on Automated individual decision-making and
Profiling for the purposes of Regulation 2016/679, Adopted on 3
October 2017). It is also noteworthy that an in-depth discussion of
what exactly the social values referred to in footnotes 2, 3 and 4
actually entail is beyond the confines of this paper.
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is achieved by establishing uncertainty about the true clas-
sifier weights. For constructing explanations, we suitably
model the uncertainty in the SVM weights through random
variables. Then, we formulate counterfactual explanations
as a optimization problem with probabilistic constraints
(Shapiro et al., 2014), and characterize its deterministic
equivalent. For linear SVMs, the deterministic problem
is a convex second-order cone program (SOCP). For the
non-linear SVM case, we propose an efficient sub-optimal
algorithm to find robust explanations utilizing the existence
of class specific prototypes. Experimental results illustrate
the trade-offs between accuracy, privacy, and explainability.

2. Preliminaries
In this section, we will describe the dataset and the SVM
learning problem. Then, we will review the privacy preserv-
ing mechanism proposed in (Rubinstein et al., 2012).

Consider a dataset D consisting of a collection of n tuples

(xi, yi), i = 1, . . . , n, (1)

where each tuple (xi, yi) consists of a features vector
xi ∈ RL and its associated class label yi ∈ {−1, 1}.
Dataset D is used to learn an SVM classifier (Hastie et al.,
2009) that can efficiently separate the two classes of data
points through a separating hyperplane. The optimization
problem for SVM with hinge loss and parameter C ≥ 0 is:

min.
w∈RF

1

2
‖w‖2 + C

n

n∑
i=1

[1− yifφ(xi,w)]+, (2)

where the weights w geometrically correspond to
the vector perpendicular to the separating hyperplane,
[a]+ := max{0, a}, and fφ is the classifier function:

fφ(x,w) := φ(x)>w. (3)

Here, the feature mapping φ : RL → RF , F ≥ L, enlarges
the feature space of the data points to improve the separa-
bility of the two classes of data points through a hyperplane
(Hastie et al., 2009). We assume in this work that F is finite.

The minimization problem defined in Eq. (2) can be formu-
lated as a quadratic program and solved efficiently.4 Let,
w∗ be the optimal solution to this problem, then the binary
classification of a data point x is the sign of fφ(x,w∗).

From Eq. (3) it can be observed that in order to perform
SVM classification, all we need is w∗ and the feature map-
ping φ. In applications where the dataset includes sensitive
information, the public release of the SVM classifier may
lead to privacy breaches through publishing w∗. There-
fore, it is required to apply a privacy preserving mechanism
before publishing the classifier, as is shown in Figure 1.

4If the number of features F is much larger than the number of
data points n, then it is more efficient to solve the dual problem.

We will use the privacy preserving mechanism proposed
in (Rubinstein et al., 2012) for SVMs with finite dimen-
sional feature mappings. This mechanism guarantees dif-
ferential privacy by perturbing the SVM optimal weights
w∗ ∈ RF through additive Laplace noise. Formally, let
M : D → R be a randomized mechanism, where D is
the set of all datasets and R is the response set of the
mechanism M (defined as the solution space of the SVM
problem). Define neighboring datasets as the datasets
in D that differ by one data point entry. Then, for a
given β > 0, a mechanism M provides β-differential pri-
vacy (Dwork & Roth, 2014) if for any two neighboring
datasets D1,D2 ∈ D and all subsets S ⊆ R it holds
Pr [M(D1) ∈ S] ≤ exp(β) Pr [M(D2) ∈ S] .
From Theorem 10 in (Rubinstein et al., 2012), the perturbed
SVM weight vector

w̃ := w∗ + µ, (4)

where µ is a vector of iid Laplace random variables

µi ∼ Lap(0, λ), i = 1, . . . , F, (5)

guarantees β−differential privacy for λ ≥ 4Cκ
√
F/(βn),

where κ satisfies φ(x)>φ(x) ≤ κ2 for all x ∈ RL.5

In the following, we will assume that the following informa-
tion is available for calculating the counterfactual explana-
tions: the SVM weights w̃, the data-independent details for
constructing φ, and the noise scale λ.

3. Robust Counterfactual Explanation
The concept of counterfactual explanations was proposed
in (Sandra Wachter, 2018) for general ML classifiers. The
following definition corresponds to binary SVM classifiers:
Given an SVM classifier with weight vector w, a counter-
factual explanation for the classification y′ of a given data
instance x′ is the solution of

min.
x∈RL

d(x,x′) s.t. y′fφ(x,w) ≤ 0, (6)

where d(x,x′) is a distance between x and x′ and fφ(x,w)
is defined in Eq. (3). In words, a counterfactual explanation
is the closest point to x′, in the sense of d, which has a
different class than y′.

In Figure 2, we illustrate different counterfactual expla-
nations for two linear SVM classifiers, one with optimal

5By perturbing the optimal weight vector, the accuracy of the
SVM classifier will be degraded. For this purpose, it is important to
deliver guarantees on the classification accuracy by upper bounding
the noise scale λ. This is done in (Rubinstein et al., 2012) by
introducing a condition called (ε, δ)-useful mechanism. We will
rely on experimental validation for the accuracy and omit the
description of the theoretical bounds here due to space constraints.
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weights w∗ and one with perturbed weights w̃. For both
optimal and perturbed classifiers, the explanations are the
closest points to the instance and lie on the respective deci-
sion boundaries. It can be seen that the non-robust expla-
nation on the perturbed boundary is closer to the instance
compared to the optimal explanation and thus also has the
same classification as the instance when using the optimal
classifier. Hence, the non-robust explanation may not be
credible or valid. We will next study robust explanations
which take into account the perturbations.

According to Eq. (4), the private SVM mechanism releases
noisy versions of the optimal w∗. Thus, there exists un-
certainty about the correctness of the classification with w̃,
which diminishes the effectiveness of the counterfactual
explanation unless this uncertainty is taken into account.
Therefore, we will model the uncertainty about w∗ through
the random vector ξ = w̃−µ. From Eq. (5), it follows that

ξ ∼ mvLap
(
w̃, 2λ2I

)
, (7)

where mvLap(l,Σ) is the multivariate Laplace distribution
with location l and covariance Σ. Subsequently, we can
formulate the robust counterfactual explanation problem as

min.
x∈RL

d(x,x′) s.t. Pr [y′fφ(x, ξ) ≤ 0] ≥ p, (8)

where we have replaced the constraint in Eq. (6) with a prob-
abilistic constraint. The next result provides a reformulation
for the constraint above.
Proposition 1. The deterministic equivalent of the proba-
bilistic constraint in Eq. (8), with p ∈ [1/2, 1], is

y′fφ(x, w̃)− λ
√
2 ln(2(1− p))‖φ(x)‖︸ ︷︷ ︸
g(x)

≤ 0. (9)

Proof. From Eq. (7), the multivariate Laplace distribution
mvLap

(
w̃, 2λ2I

)
is symmetric since the variance does not

depend on the mean. A symmetric multivariate Laplace dis-
tribution is elliptically symmetric (Kotz et al., 2001). Conse-
quently, the structure of Eq. (9) follows from Lemma 2.2 in
(Henrion, 2007), and for the multivariate Laplace distribu-
tion, the derivation follows similar steps as in Example 2.2
in (Peng, 2019).

The left hand side of Eq. (9) includes two terms: The
first term is the same as in the constraint in Eq. (6) and
requires that the solution of the problem has a different
class than y′. The second term establishes robustness by
enforcing stronger confidence in the SVM prediction, i.e.,
larger |fφ(x, w̃)|. Notice that for p = 0.5, this second term
is zero, i.e., the constraint becomes identical to that of the
non-robust case.

For linear SVM, i.e., φ(x) = x, the constraint in Eq. (9)
can be rewritten as ‖x‖ ≤ y′

λ
√
2 ln(2(1−p))x

>w̃, which is a
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Figure 2. Illustration for SVM and private SVM linear classifica-
tions and the associated explanations using the Euclidean norm as
distance measure. The data points are generated from two bivari-
ate Guassian distributions with means [0, 0] and [1, 1], and same
covariance 0.1I .

convex second order cone constraint. Considering a convex
distance function d in its first argument, then the robust coun-
terfactual explanation problem in Eq. (8) for linear SVM
can be solved efficiently using convex optimization solvers.
For this work, we use CVXPY (Diamond & Boyd, 2016;
Agrawal et al., 2018), and Figure 2 shows the explanations
found by solving this problem with d(x,x′) = ‖x− x′‖.
For non-linear SVM, the problem is generally not convex.
Therefore, we will next consider a suboptimal solution that
can be computed efficiently. Notice that a root for the func-
tion g defined in Eq. (9) would qualify as a robust explana-
tion since it satisfies the constraint in Eq. (9) with equality.
In order to find a root for g, we will use the bisection method
(McNamee & Pan, 2013). As a prerequisite, this method
requires two input data points that have different classes.
Clearly, for the given data instance x′, g(x′) is positive.
The second required input vector should necessarily be of
opposite class in order for g to be negative. We will discuss
next the availability of such input that we will here refer to
as a prototype (Looveren & Klaise, 2019).

Unlike in (Looveren & Klaise, 2019), we do not have access
to test data to construct these prototypes due to privacy
issues. However, we argue that if we consider prototypes
as representatives of their classes, the “domain expert” that
provides the explanations should be able to estimate these
from experience and knowledge of the data for each class.
If this is not the case, we assume that the prototypes can
be constructed by generating random data instances and
studying their classification. The description of the well
known bisection method is relegated to the Appendix.
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4. Experimental Results
We illustrate our approach by using the publicly available
UCI Breast Cancer Wisconsin (Diagnostic) dataset (Dua
& Graff, 2017). The dataset includes 569 instances, each
with 30 features and the binary diagnosis: benign (class
−1) or malignant (class 1). This dataset is one of several
datasets typically used when evaluating privacy preserving
algorithms, e.g. (Farokhi, 2020). The code to reproduce all
the figures is available at (Mochaourab, 2021).

We randomly split the dataset once into a training (70%
of total) and a test set (30% of total). The results were
qualitatively similar for different random splits with same
splitting ratio. Moreover, we normalize the training data
to have zero mean and unit variance, and the calculated
normalization parameters are applied to the test data. Next,
a feature mapping φ is generated using the Radial Basis
Function (RBF) kernel approximation in (Rahimi & Recht,
2007) with dimensions F = 100.6 For the implementation
of the feature mapping, we have used the library in (Atarashi,
2019). The SVM classifiers learned for the plots are trained
using the training set and their performance measured on the
test set. The distance function used for the counterfactuals in
Eq. (6), is the Eucleadian norm, i.e., d(x,x′) = ‖x− x′‖.
The prototypes are selected as the data mean of each class.
For calculating the average performance in the plots, we use
104 random realizations of Laplace noise.

0 10 20 30 40 50
β

0.5

0.6

0.7

0.8

0.9

1.0

cl
as

si
fic

at
io

n
ac

cu
ra

cy

private SVM
non-private SVM

Figure 3. Tradeoff between average accuracy and privacy.

Figure 3, depicts the trade-off between average accuracy and
privacy of the private SVM. The dashed line corresponds
to the non-private case in which the SVM weights are not
perturbed with noise. The average accuracy for the private
SVM is lowest (≈ 0.5) for high privacy levels (very small β),
and monotonically increases with β to eventually converge
to the non-private average performance.

6Note that we have assumed finite dimensional feature map-
pings and hence we do not explicitly consider the approximation
error in the feature mapping in relation to using the RBF kernel
as is done in Section 4 in (Rubinstein et al., 2012) for the general
case of translation-invariant kernels.

The average distance between the counterfactual explanation
and the instance is calculated depending on β (for p =
0.9) in Figure 4, and depending on p (for β = 0.5) in
Figure 5. This average distance for robust counterfactual
explanations is high for small values of β, as is shown in
Figure 4. This is due to the large uncertainty through the
large noise variance. The non-robust explanations, which
correspond to low confidence value of p = 0.5, have similar
average distance as for non-private SVM since the noise has
zero mean. In Figure 5, the tradeoff between confidence p
and the average distance are shown. For large confidence
values p, the robust explanation converges to the prototype
data point, and is furthest away from the instance.
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Figure 4. Average distance from explanation to instance (p = 0.9).
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Figure 5. Average distance from explanation to instance (β = 5).

5. Conclusions
The above findings highlight the difficulties associated with
embedding the social and ethical values mandated by regu-
latory instruments into ML algorithms. An ensuing conclu-
sion is that a conscious decision may be required to promote
one social value at the expense of another, the context in
which the technology is being operated potentially being a
deciding factor. These issues are highlighted in this work
through the joint study of privacy and counterfactual expla-
nations that are valid within desired levels of confidence.
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Appendix: Bisection and Further Results

Algorithm 1 Bisection method for finding an explanation
1: Input: Data instance (x′, y′), prototype z−y′ .
2: Initialize: xub = z−y′ ,xlb = x′
3: while ‖xub − xlb‖ > ε do
4: x← (xub + xlb)/2
5: if g(x) < 0 then
6: xub ← x
7: else
8: xlb ← x
9: Output: xro−ex ← x.

The steps for the bisection method are described in Algo-
rithm 1. The lower and upper bounds for bisection are
initialized according to the given data instance and the pro-
totype from the opposite class, respectively. Here, the pro-
totypes for class 1 and −1 are z1 and z−1, respectively.
In the process of finding these prototypes, it is desired
that the classification of these points has sufficient confi-
dence, i.e., |fφ(zy, w̃)| ≥ −λ

√
2 ln(2(1− p))‖φ(zy)‖, for

y ∈ {1,−1}. In each iteration of Algorithm 1, we check the
classification of the midpoint of the interval between the up-
per and lower bounds. If this class is the same as the lower
bound, then we replace the lower bound by the midpoint.
Otherwise, we replace the upper bound. These steps are
performed until the distance between the upper and lower
bounds is lower than the threshold ε. The algorithm has
linear convergence since the distance between the bounds is
halved in each iteration.

Figure 6 shows the low number of iterations needed for
Algorithm 1 to converge. Here, we set β = 5, p = 0.9.
Then, we select a random instance x′ from the test set
with label y′ = 1 (malignant), and apply Algorithm 1 to
calculate an explanation xro−ex for its classification. The
found explanation xro−ex quantifies the changes to each
feature of x′ in order to change the classifier prediction.
Figure 7 shows these changes normalized over the instance’s
feature values. For example, for the selected instance, the
explanation shows that feature number 19 needs to increase
by around half its value, while other feature values need to
be halved to alter the prediction from malignant to benign.

Clearly, it is desirable to find counterfactual explanations
that are as close as possible to the instance to explain. Still,
as we observe in Figure 4 and Figure 5, robust explanations
are further away compared to the non-robust explanations,
showing that privacy degrades the quality of explanations.
The reason for that is, non-robust explanations violate the
constraint in Eq. (6) with probability 0.5, while the ro-
bust explanations violate this constraint with probability p
(which we here set to 0.9). This constraint violation is fur-
ther studied in Figure 8 and Figure 9. There, the summary
statistics for the left hand side of the constraint in (6) are
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Figure 6. Convergence of Algorithm 1.
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Figure 7. The counterfactual explanation quantifies the necessary
changes in the instance’s features to alter the prediction.
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Figure 8. Constraint violation by non-robust explanations
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Figure 9. Constraint violation by robust explanations

plotted for the non-robust and robust explanations, respec-
tively. These plots highlight the importance for considering
robust explanations. Notice that the flattening of the 50-th
percentile curve (Figure 9) for β less than around 4 is due
to the convergence of the explanation to the prototype.


