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Abstract

In recent years, machine learning techniques uti-
lizing large scale datasets have achieved remark-
able performance. Differential privacy, by means
of adding noise, provides strong privacy guaran-
tees for such learning algorithms. The cost of
differential privacy is often a reduced model accu-
racy and a lowered convergence speed. This pa-
per investigates the impact of differential privacy
on learning algorithms in terms of their carbon
footprint due to either longer run-times or failed
experiments. Through extensive experiments, fur-
ther guidance is provided on choosing the noise
levels which can strike a balance between desired
privacy levels and reduced carbon emissions.

1. Introduction
With the rising availability of large-scale, diverse datasets,
performance of Machine Learning (ML) models have expe-
rienced a significant boost across a multitude of domains.
This boost is also associated with the availability of extreme-
scale datasets, which is heavily linked to individual user
contributions achieved via crowd-sourcing. ML algorithms
often perform operations directly on raw user data leading
to a host of privacy violations. Differential Privacy (DP)
(Dwork & Roth, 2014; Abadi et al., 2016) makes progress
in this domain by providing strong privacy guarantees for
such contributing individuals. This guarantee is achieved
by means of noise addition, which can be done at various
stages of the ML pipeline including : (1) Local DP: Addi-
tion to the raw data (2) Gradient DP: Addition to gradients
after clipping (Abadi et al., 2016) (3) Addition to Output &
Objective DP: Addition to the final ML model or the loss
function (Chaudhuri et al., 2011).
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1.1. Impact on Climate Change

It is well-known that the computational resource invest-
ment requisite for training ML models generates a carbon
footprint. This footprint is amplified in privacy-preserving
setups where it is harder to reach consistent accuracy due
to the addition of noise. Extended and failed runs (espe-
cially on larger datasets) actively contribute to an increase
in the carbon footprint of ML experiments (Strubell et al.,
2019). Therefore, an analysis of the climatic impact of this
privacy modulation is critical. While the existing DP litera-
ture studies several performance aspects affected by varying
privacy requirements, it lacks a comprehensive quantifica-
tion of the carbon footprint of DP and how it is affected
by variable privacy levels. Since DP also provides a mathe-
matical paradigm to quantify the privacy budget of training
ML models while tracking the privacy usage across multiple
runs, this paper aims at quantifying the Carbon Emissions
(CE) associated with varying privacy budgets of differen-
tially private networks. In order to study impact of DP
on these emissions, we implement Gradient DP (DP-SGD
(Abadi et al., 2016)) for natural language processing, im-
age classification, and reinforcement learning domains to
identify the privacy implications, model performance and
most crucially the carbon footprint of each algorithm. As
per our knowledge this is the first attempt to quantitatively
benchmark the carbon footprint of differentially private ML
models.

1.2. Differential Privacy

Definition 1: Given a randomized mechanism A : D → R
(with domain D and range R) and any two neighboring
datasets d1, d2 ∈ D (i.e. they differ by a single individual
data element),A is said to be (ε, δ)-differentially private for
any subset S ⊆ R 1.

Pr [A (d1) ∈ S] ≤ eε · Pr [A (d2) ∈ S] + δ (1)

Here, ε ≥ 0, δ ≥ 0. A δ = 0 case corresponds to pure
differential privacy, while both ε = 0, δ = 0 leads to an
infinitely high privacy domain. Finally, ε =∞ provides no
privacy guarantees.

1In this work, we exclusively use Gaussian noise
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The privacy of differentially private models can be quanti-
fied with parameters such as epsilon (ε) and delta (δ). Utiliz-
ing DP-SGD (Abadi et al., 2016), that is, adding noise to the
gradients at each step during training using a clipping factor
(S) and noise multiplier (z), the amount of noise added to
the model can be linked to to the degree of privacy that the
model can achieve. Theoretically, a lower value of ε indi-
cates a higher degree of privacy and this increased privacy
degree is understandably, achieved at the expense of model
performance due to the addition of the noise. The practical
implication of this, however, includes a direct impact on the
computational resources required to achieve model perfor-
mance. Reduced privacy requirements allow the addition
of noise with limited power, and hence, models can achieve
appropriate performance without any significant resource
expense. On the other hand, high privacy requirements ne-
cessitate adding a significantly large magnitude of noise
which may directly lead to an increase in the number of
training passes that the model has to iterate over to achieve
the same accuracy. Further, noise addition may even lead to
the non-convergence of some systems in the worst case.

1.3. Related Work

Works such as (Strubell et al., 2019; Toews, 2020) discuss
how conventional Machine Learning models impact carbon
footprint. In particular, (Strubell et al., 2019) discusses how
training a single Deep Learning model generates the total
lifetime carbon footprint of nearly five cars (as mentioned in
(Toews, 2020)) which is more than 17 times the amount of
CO2 emissions generated by an average American per year.
Regarding DP, there has been very little considerations on
how Privacy-Preserving Machine Learning (PPML) impacts
climate change. In (Qiu et al., 2021), a comprehensive study
is presented on how local client-side models in Federated
learning (FL) could potentially hold quality data required to
understand climate change given data privacy concerns due
to recent policies like GDPR (Skendžić et al., 2018). How-
ever, running local models on multiple client devices and
aggregating them globally at the server level requires addi-
tional infrastructure in place, thereby causing a detrimental
effect on carbon emissions.

1.4. Contributions and Impacts

In this paper, we provide the first benchmark to quanti-
tatively assess how DP-noise affect carbon emissions in
three different tasks : (1) a Natural Language Processing
(NLP) task using news classification (2) a Computer Vision
(CV) task using the MNIST dataset and (3) a Reinforcement
Learning (RL) task using the Cartpole control problem. Intu-
itively, when DP noise is added to ML pipelines, the carbon
emissions should increase as the energy required for com-
putations increase. In order to quantify how the addition
of noise plays into climate change, we track carbon emis-

sions in the models using the codecarbon tool (Schmidt
et al., 2021), a joint effort from authors of (Lacoste et al.,
2019) and (Lottick et al., 2019). We record the average
accuracy of several runs of the considered ML task to assess
the behavior of DP-noise.

Given the rise in Privacy-enhancing Technologies and pri-
vacy policies, the addition of noise to mask data patterns
has become prevalent. We envisage this work to provide an
insight on how much noise could result in varying amounts
of CO2 emissions. Hence, our work takes a peek at how
the addition of noise could impact a number of industries
from healthcare to finance and justice, where sensitive data
is commonly in use.

2. Experimental Results
2.1. BERT

In these set of experiments, we evaluate the performance of
two experiments on Bidirectional Encoder Representations
from Transformers or BERT (Devlin et al., 2019). The
model is fine-tuned for topic-classification of news articles.
The primary objective of these experiments is to observe
the carbon emissions and energy usage of vanilla BERT and
DP-BERT (over different privacy levels).

A randomly sampled subset of the AG News Classification
(Anand, 2020) is used for this task with a 80/20 train-test
split. 15000 instances are used to fine-tune this model. We
use BERT in conjunction with the AdamW optimizer and
the bert-base-cased tokenizer (with a batch size (B) of 32).
Finally, we conduct the following two experiments for this
task.

2.1.1. EVALUATION OF DP-BERT’S CARBON
EMISSIONS AND ENERGY CONSUMED FOR
VARYING PRIVACY REGIMES

The aim of this experiment is to analyse any possible as-
sociation between different levels of privacy and carbon
emissions. We run these experiments for 10 epochs each
and present our results in Table 1 (averaged over 3 runs).
Curiously, the carbon emissions for the ε = 0.5 case is
comparable to the EU’s 2021 passenger vehicle standard
(Bandivadekar, 2013).

Epsilon (ε) CE (g) EC (Wh) Accuracy (%)
0.5 26.7 ± 0.63 49.9 ± 1.2 48.5 ± 1.39
2 26.3 ± 0.49 49.3 ± 0.9 52.0 ± 0.73
5 26.1 ± 0.1 48.9 ± 0.9 52.3 ± 0.36
15 25.9 ± 0.09 48.5 ± 0.1 54.2 ± 1.40
∞ (Non-Private) 25.2 ± 0.00 47.1 ± 0.27 58.5 ± 5.29

Table 1. DP-BERT: Emission-Accuracy trends over change in ε
for reaching 52% accuracy.

In congruence with existing literature, the accuracy of the
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differentially private BERT increases consistently with the
increase in epsilon. Interestingly, with the increase in the
epsilon value – both, CE and EC decrease, though not by
a very significant margin. Given that the range of the cho-
sen ε varies considerably, the consequent difference in the
carbon emission is not proportionally varied. The practical
implication of this invariance can be seen as incurring nearly
the same carbon footprint for two versions of a model with
different degrees of privacy.

Epsilon (ε) Epochs CE (g) EC (Wh)
0.5 19 153.6 287.3
2 12 96.6 180.6
5 9 80.9 151.3
15 7 56.9 106.5
∞ (Non-Private) 6 8.5 16

Table 2. Observing the number of epochs needed to achieve the
threshold accuracy (T ) with different privacy levels

2.1.2. ANALYZING THE RESOURCE EXPENSE OF
ACHIEVING A THRESHOLD ACCURACY AT
DIFFERENT PRIVACY REGIMES

The main aim of this experiment is to evaluate how many
resources, in terms of consequent carbon and energy emis-
sions are expended in order to achieve a target or threshold
accuracy with different degrees of privacy. As defined in
the previous set of experiments, we compute the accuracies
over ε = 0.5, 2, 5, 15.We set the target/threshold accuracy
(T ) to 52% as shown in Table 2.

It can be inferred from Table 2 that the Carbon Emission
and Energy Usage required to attain the maximum experi-
mental value of privacy is nearly 18 times the carbon emis-
sion required to attain the same threshold accuracy with a
non-privacy preserving variant of the model. The practical
consequence of this experiment dictates that enhancing the
degree of privacy of the model, can incur a huge compute
cost, which can invariably increase the carbon footprint of
the model’s training pipeline.

Additionally, From Figure 1, which present the accuracy
curves for the experiment, it is quite evident that the vanilla
variant (i.e a model without DP-noise) achieves the thresh-
old accuracy with a significantly smaller carbon footprint
than all the footprint of its privacy-preserving variants.

2.2. MNIST

Epsilon (ε) CE (g) EC (Wh)
0.5 * 10.53 ± 2.21 40.41 ± 0.93
2 * 10.6 ± 2.43 40.5 ± 0.53
5 7.85 ± 1.84 29.93 ± 0.46
15 1.61 ± 0.37 6.17 ± 0.27
∞ (Non-Private) 0.08 ± 7e-04 0.38 ± 3.3e-03

Table 3. MNIST: Emission trends over change in ε for reaching
70% accuracy (* 70% accuracy not reached even after 200 epochs.)

(a) BERT: Training Accuracy

(b) BERT: Testing Accuracy

Figure 1. BERT with Gaussian DP: Training and Testing accu-
racy trends over change in ε where the threshold accuracy (T ) is
set to 52%.

We evaluate our approach on the MNIST dataset (LeCun
& Cortes, 2010) with a batch size of 128 using DP-SGD
(Abadi et al., 2016). We use a simple multi-layer perceptron
(MNIST 2NN) with a two hidden layers of 200 units each
(parameters = 199,210) as the network from (McMahan
et al., 2017). Our goal is to observe the trend in the CO2

emissions by allowing the model to train and reach X accu-
racy with different values of ε (different levels of privacy).
We compute the accuracies over ε = 0.5, 2, 5, 15 as shown
in Fig. 2. We set the target/threshold accuracy (T ) to 70%
so that most of the privacy-variant models can achieve un-
der 200 iterations. In Fig. 2 we see that only models with
ε = 5, 15 reach 70% accuracy within 200 epochs. Fig. 2
also shows a clear trend on how increasing levels of privacy
in ML models increases the amount of computation required
to reach T , thereby releasing higher carbon emissions in
comparison to the ε =∞ (baseline) case.

2.3. Cartpole

For the reinforcement learning experiments, we trained a
DQN over OpenAI Gym’s Cartpole-v0 environment. The
Cartpole environment (Barto et al., 1983) consists of an
un-actuated joint to a cart. There are two possible actions
which involve a force of +1 or -1 being applied to the cart
along a friction-less track. The pole starts upright, with the



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Towards Quantifying the Carbon Emissions of Differentially Private Machine Learning

(a) MNIST: Accuracy on Training Set

(b) MNIST: Accuracy on Test Set

Figure 2. MNIST with Gaussian DP: Training and test accuracy
trends during training for multiple ε values.

Figure 3. CartPole with Gaussian DP: Episodes vs Rewards for
the mean reward every 100 episodes

goal of preventing it from falling over. For every time-step
that the pole is upright, a reward of +1 is added to the total
reward. However, if the pole exceeds 15 degrees from the
vertical, or if the cart moves more than 2.4 units from the
center, the episode ends.

The DQN’s configuration (including the hyperparameters)
is the same as the one used in (Wang & Hegde, 2019), and
we observed results similar to this paper, with one variant
of DP model slightly outperforming the baseline as shown
in 3. It consists of a single hidden layer with 16 neurons.
For our non-private experiment we obtained a mean reward

of 19.94 and carbon emissions of 0.22 g on average (over a
1000 episodes). We provide results of the private variants in
Fig. 3. Our setup included multiple experiments.

• Noise addition to DQN’s output layer only. (1)
• Noise addition to both, the DQN’s output layer and its

parameters. The noise added to the parameters is the
averaged noise sampled from the noisebuffer function
during the forward pass. (2)

We varied the value of the variance σ of the distribution
to observe its impact on the function approximated by the
DQN. As expected, with increasing noise addition to the
model (i.e., increasing value of σ), we notice a drop in the
average reward. Subsequently, the increased computations
lead to higher carbon emissions. We observe that there is a
significant increase in CE from Table 5 to Table 6 when the
number of episodes increase.

Epsilon∗

(ε∗ ∝ 15ε)
Sigma
(σ ∝ 1

ε
)

Mean Reward CE (g)

1 15 4.5 ± 0.6 1.03 ± 0.06
3 5 2.2 ± 0.2 0.96 ± 0.03
7.5 2 19.9 ± 0.5 1.14 ± 0.06
30 0.5 19.4 ± 0.1 1.15 ± 0.06

Table 4. CartPole: Emission trends over change in ε∗ post 1000
episodes in (1) following (Wang & Hegde, 2019)

Epsilon∗

(ε∗ ∝ 15ε)
Sigma
(σ ∝ 1

ε
)

Mean Reward CE (g)

1 15 2.3 ± 0.9 0.41 ± 0.01
3 5 10.2 ± 0.8 0.5 ± 0.02
7.5 2 7.6 ± 0.7 0.45 ± 0.02
30 0.5 13.8 ± 0.1 0.48 ± 0.03

Table 5. CartPole: Emission trends post 1000 episodes in (2)

Epsilon∗

(ε∗ ∝ 15ε)
Sigma
(σ ∝ 1

ε
)

Mean Reward CE (g)

1 15 13.2 ± 0.3 3.51 ± 0.26
3 5 13.7 ± 0.9 2.31 ± 0.28
7.5 2 18.1 ± 0.1 2.72 ± 0.23
30 0.5 19.8 ± 0.6 4.0 ± 0.31

Table 6. CartPole: Emission trends post 5000 episodes in (2)

3. Conclusion
We demonstrate and highlight the prominent impact of
Privacy-Preserving Machine Learning (PPML) on carbon
emissions over three ML domains, namely, CV, NLP and
RL. We observe that the stronger privacy regime, i.e, a lower
ε value, ML algorithms always result in higher levels of car-
bon emissions independent of the ML domain. We conclude
that alongside the challenge of obtaining state-of-the-art
performance, PPML needs to reduce the number of epochs
required to reach the desired performance. This leads us
to the following critical questions which we leave as open
questions for the future: (1) Can we reduce the number
of iterations (including hyperparameter tuning) required to
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reach a privacy-utility ratio? (2) How much does the size
of ML models affect the carbon emissions and the overall
performance under PPML?
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