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Abstract

Algorithms that aid human decision-making may
inadvertently discriminate against certain pro-
tected groups. We formalize direct discrimina-
tion as a direct causal effect of the protected at-
tributes on the decisions, while induced indirect
discrimination as a change in the influence of
non-protected features associated with the pro-
tected attributes. The measurements of aver-
age treatment effect (ATE) and SHapley Addi-
tive exPlanations (SHAP) reveal that state-of-
the-art fair learning methods can inadvertently
induce indirect discrimination in synthetic and
real-world datasets. To inhibit discrimination in
algorithmic systems, we propose to nullify the in-
fluence of the protected attribute on the output of
the system, while preserving the influence of re-
maining features. To achieve this objective, we
introduce a risk minimization method which op-
timizes for the proposed fairness objective. We
show that the method leverages model accuracy
and disparity measures.

1. Introduction
Discrimination consists of treating somebody unfavorably
because of their membership to a particular group, charac-
terized by a protected attribute, such as race or gender. To
prevent disparate treatment, the law often forbids the use
of certain protected attributes, such as race or gender, Z,
in decision-making, e.g., in hiring, and dictates that these
decisions, Y , shall be based on relevant attributes, X , and
not depend on the protected attribute, Z. Historically, e.g.,
in the case of redlining, the prohibition of such direct dis-
crimination was sometimes circumvented by the use of at-
tributes correlated with the protected attribute as proxies.
This is a particularly acute problem for machine learn-
ing data-rich systems, since they often find surprisingly
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accurate surrogates for protected attributes when a large
set of legitimate-looking features is available, resulting in
the inducement of discrimination via association (Wachter,
2019). To prevent such inducements of discrimination, le-
gal systems establish that the impact of a decision-making
process should be the same across groups differing in pro-
tected attributes, unless relevant attributes justify it, accord-
ing to a business necessity clause (BNC) (Title VII of the
Civil Rights Act, 1964). The main challenge in introducing
non-discriminatory learning algorithms lies in preventing
the inducement of indirect discrimination, while simulta-
neously avoiding direct discrimination (Zafar et al., 2015).

Related works. In machine learning, discrimination is typ-
ically defined based on statistical independence or causal
relations. Well-known fairness objectives, such as parity
of impact and equalized odds, correspond to the statistical
independence between Z and Y (Hardt et al., 2016; Zafar
et al., 2017; Aswani & Olfat, 2019). However, these no-
tions are inconsistent with their legal counterparts (Lipton
& Steinhardt, 2019) as legal systems allow for crucial ex-
ceptions from this independence through the BNC which
permits decisions, Y , to depend on Z through X .

Causal approaches define direct and indirect discrimina-
tion as direct and indirect causal influence of Z on Y , re-
spectively (Zhang et al., 2017; Zhang & Bareinboim, 2018;
Marx et al., 2019). While this notion of direct discrimina-
tion is consistent with the concept of disparate treatment
in legal systems, the corresponding indirect discrimination
is not consistent with them, since the BNC allows for the
use of an attribute that depends on the protected feature
(causally or otherwise). This issue is addressed by path-
specific notions of causal fairness (Nabi et al., 2019; Chi-
appa, 2019; Wu et al., 2019). These methods allow for fair
causal paths in which the impact of the protected attribute
is permitted, thus, allowing for BNCs. However, if there is
no limit on the influence that can pass through such a path,
then the path can be used for indirect discrimination, as in
the aforementioned case of redlining.

Problem summary. Consider a model supporting hu-
man decisions trained on a dataset of n samples D =
{(xi, zi, yi)}, where xi ∈ X , zi ∈ Z , yi ∈ Y , and
i = 1, ..., n. The goal of a standard supervised learning
algorithm is to obtain a function ŷ : X → Y that op-
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timizes a given objective, e.g., E[`(Y, ŷ(X))], where the
expectation is over the samples in D and ` is a loss func-
tion. If the dataset is tainted by discrimination, the crucial
question is how to drop Z from a model without inducing
discrimination, that is without increasing the impact of rel-
evant attributes X correlated with Z in an unjustified and
discriminatory way as in redlining.

Contributions. Our work bridges statistical and causal no-
tions of fairness with the literature on explainability, while
staying consistent with legal systems. First we define the
concepts of direct and induced indirect discrimination via
measures of causal influence. Second, we construct loss
functions, grounded in causality and explainability litera-
ture, that measure the change in influence of X while the
protected attribute Z is removed. Third, we introduce and
evaluate an optimization method that drops the protected
Z from a model while minimizing the induction of indi-
rect discrimination through the non-protected features X
by minimizing the aforementioned loss functions.

2. Problem formulation
Consider decisions Y that are outcomes of a model that acts
on random variables W having support inW . The dimen-
sions of W are indexed, e.g., Wi corresponds to the i’th
random variable with supportWi, where i ∈ F . We distin-
guish between a set of non-protected attributes N , consti-
tuting the |N |-dimensional random variable WN = X ,
and a set of protected features P , constituting the |P|-
dimensional WP = Z. These sets are non-empty, non-
overlapping, and the set of all features is F = N ∪ P .

The model generating decisions Y can suffer the effects of
training on discriminatory data. We propose that a non-
discriminatory model, Ŷ , of Y shall remove the influence
of the protected features on Y , while preserving the influ-
ence of remaining features on Y . In the following sub-
sections, we develop loss functions for supervised learning
that aim to achieve this objective.

2.1. Formulation based on causal effect measures

Formal frameworks for causal models include classic
potential outcomes (PO) and structural causal models
(SCM) (Pearl, 2009) or more recent segregated graphs that
include undirected causal relationships (Shpitser, 2015).
The methods presented in this work do not rely on the no-
tion of intervention, which tends to have a consistent mean-
ing across causal frameworks.

Note that decisions Y are causal outcomes of the model
and the causal parents of these decisions are W . This
crucial point, emphasized in causal explainability litera-
ture (Janzing et al., 2019), allows us to compute influence
measures via causal interventions on chosen components

of W , as if there was no direct causal links between the
components of W . Following SCM framework, samples
of Y are generated by some function, y = f(w, ε), where
ε is exogenous noise. Since the exogenous noise is unpre-
dictable, here we focus on the de-noised function y(w) =
Eε f(w, ε). In the notation of SCM and PO, the potential
outcome for variable Y after intervention do(Z = z) is
written as Yz . Average treatment effect of z on y w.r.t. a
reference intervention z′ is defined via respective interven-
tions (Pearl et al., 2016),

ATEY (z′, z) = E[Yz′ − Yz] = E[Y |X, z′]− E[Y |X, z],

where the last two expectations are over ε and a marginal
distribution of P (X), due to the causal adjustment for X .
A non-causal estimate would use conditional P (X|z) in-
stead of P (X). The causal controlled direct effect of z on
y w.r.t. a reference intervention z′ and intervention x is

CDEY (z′, z|x) = E[Yx,z′ − Yx,z]. (1)

Definition 1. Direct discrimination is the causal influence
of a protected attribute Z on the decisions Y in the sense
that ∃z,z′∈P∃x∈NCDEY (z, z′|x) 6= 0.

To remove this discrimination, one can construct a model Ŷ
that does not use Z. However, this may introduce indi-
rect discrimination into the model via the non-protected at-
tributes Xi associated with the protected attributes Z.

Definition 2. Indirect discrimination induced via Xi is
a change in the influence of Xi that depends on Z
between the causal process Y and its model Ŷ , i.e.,
∃z∈P∃x,x′∈NCDEY (x,x′|z) 6= CDEŶ (x,x

′|z) such
that P (x|z) 6= P (x) or P (x′|z) 6= P (x′).

To preserve influence of non-protected attributes we can
minimize the following loss

LIND
ATE(X) =

∑
i

LATE(Xi) =∑
i

E
X′′i ,Xi

`(ATEY (Xi, X
′′
i ),ATEŶ (Xi, X

′′
i )).

A similar loss could be constructed based on the compar-
ison between CDEY (X,X ′′|Z) and CDEŶ (X,X ′′|Z).
In this paper we focus on losses that compare ATE and
SHAP input influence measures.

2.2. Formulation based on input influence measures

Alternatively, influence can be measured on the grounds of
input influence measures introduced to explain black-box
AI models.

To measure the influence of a certain variable Wi prior
works suggest to make a probabilistic intervention on that
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variable by replacing it with some W ′i (Datta et al., 2016;
Lundberg & Lee, 2017; Janzing et al., 2019). Let the ran-
dom input variables be W = XZ, which are a concate-
nation of variables X and Z. Let primed variables have
the same joint distribution as the non-primed variables,
∀w∈WP (W ′ = w) = P (W = w), while being indepen-
dent from them, W ′ ⊥ W . Let double primed variables
have the same marginal distributions as the non-primed
variables, ∀i∈F∀w∈WiP (W

′′
i = w) = P (Wi = w), and

be independent from each other and the non-primed vari-
ables, i.e., ∀i∈F∀j 6=iWi ⊥ Wj , W ′′ ⊥ W ′ and W ′′ ⊥
W . Then, the random variable WTW

′
−T = WTW

′
F\T

represents a modified random variable W with its com-
ponents Wi replaced with samples from P (W ′) for each
i ∈ F \ T .

For any subset of features T that does not contain i, we
can define a marginal influence (Datta et al., 2016; Janzing
et al., 2019)

MIY (Wi|w, T ) = E
W ′

[
YwT∪{i}W

′
−(T∪{i})

− YwTW ′
−T

]
,

where W ′ is a random baseline.

A popular measure of input influence is based on the Shap-
ley value, which averages the marginal influence over all
possible subsets T (Datta et al., 2016; Lundberg & Lee,
2017),

SHAPY (wi|w) =
∑

T⊆F\{i}

MIY (Wi|w, T )
|F|
(|F|−1
|T |

) . (2)

To preserve influence of non-protected attributes we can
minimize the following loss,

LIND
SHAP(X) =

∑
i

LSHAP(Xi) =∑
i

E
X
`( E

Z′′
SHAPY (Xi|XZ ′′), E

Z′′
SHAPŶ (Xi|XZ ′′)).

3. Minimizing LATE(X) and LSHAP(X)

We seek models Ŷ of binary Y that remove the influence of
the protected attributes Z, while preserving the influence
of non-protected attributes X by minimizing LIND

ATE(X)
or LIND

SHAP(X) via transfer learning. First, we drop the
protected attribute(s) Z from the data. We then obtain
“Trad. w/o Z” model by minimizing the cross entropy
loss, H(ŷ, y) = −

∑
i yi log ŷi. Next, we optimize for ei-

ther LIND
ATE(X) or LIND

SHAP(X). For both objectives we use
`2 loss. We refer to these two-stage optimization-based
methods as OPT-ATE and OPT-SHAP, respectively. The
training is done using momentum based gradient optimizer
ADAM (Kingma & Ba, 2017) via batch gradient descent.
We fine-tune two hyper-parameters: learning rate (α) and

number of epochs (N ). During fine-tuning we pick the val-
ues for which we get the best performance on the validation
set. In our datasets, α is 1e−3 to 1e−2 andN is from 20 to
100. Our implementations of the methods will be released
publicly as a Python library.

4. Experiments
We examine our method’s and other supervised learning
methods addressing discrimination’s performance in bi-
nary classification on synthetic and real-world datasets.
We measure EX,Z |SHAPY (Xi|X,Z)|, following Lund-
berg & Lee (2017), and EXi,X′i

|ATEY (Xi, X
′
i)|. To re-

duce computational costs, we use sub-sampling to compute
these. In addition, we measure accuracy, demographic dis-
parity (|P(ŷ = 1|z = 0) − P(ŷ = 1|z = 1)|), and equal
opportunity difference (|P(ŷ = 1|y = 1, z = 0) − P(ŷ =
1|y = 1, z = 1)|). The dataset is partitioned into 20:80 test
and train sets. All results are computed on the test set.

4.1. Evaluated learning methods

We evaluate four learning methods addressing discrimina-
tion at different stages of a machine learning pipeline (ab-
breviations in parenthesis). Pre-processing: Reweighing
approach from Kamiran & Calders (2012). In-processing:
(1) Reductions model (“Exp Grad”) from Agarwal et al.
(2018). We evaluate four variations of reductions con-
straining demographic parity, equalized odds, equal oppor-
tunity, and error ratio (”DP”, ”EO”, ”TPR”, and ”ER”).
(2) Adversarial debiasing (“Adv Deb”) from Zhang et al.
(2018). Post-processing: Calibrated equalized odds ap-
proach (“CalEqOdd’) from Pleiss et al. (2017).

We use the implementations of these algorithms as pro-
vided in the AI Fairness 360 open-source library (Bellamy
et al., 2018). The baseline “traditional” model and under-
lying classifier for all the evaluated models is logistic re-
gression. We also evaluate a logistic regression model that
drops the protected attribute, Z, before training.

4.2. Synthetic results

To generate the synthetic dataset we draw samples from
a multivariate normal distribution with standard normal
marginals and given correlations. We then convert a col-
umn of our matrix into binary values, set that as Z, and set
the rest as X . The correlations between both (X1, X2) and
(X2, Z) are zero. We compare the learning methods while
increasing the correlation r(X1, Z) from 0 to 1. We use a
simple model, Y = σ(X1 + X2 + Z + 1) where σ is the
logistic function.

Both OPT approaches preserveX1’s influence with respect
to the full model as r(X1, Z) increases (red and solid blue
lines in Figure 1). As expected, the influence of X1 in-
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Figure 1. SHAP influence of X1, model accuracy, and two pop-
ular fairness measures as we increase the correlation r(X1, Z).
Error bars show 95% confidence intervals based on 30 samples.

creases with correlation for the traditional method that sim-
ply drops Z, i.e., it induces indirect discrimination via X1

(dotted blue line in Figure 1). Interestingly, even though the
OPT does not optimize for either fairness measure, it per-
forms better for all fairness measures than the traditional
method dropping Z (in Appendix A we show results for
two other fairness measures).

Other methods addressing discrimination either change the
influence of X1 with the growing correlation r(X1, Z)
(“Exp Grad” in Figure 1) or use the protected attribute
Z and thus discriminate directly (see ”Adv Deb”, ”CalE-
qOdd”, ”Reweighing” in Appendix A). For instance, the
method optimizing for parity of impact decreases the im-
pact of X1, because it aims to remove the correlation be-
tween Ŷ and Z (brown line in Figure 1). Results for ATE
are qualitatively the same as for SHAP (Appendix C).

4.3. Real-world results

We train and test the evaluated methods on the COMPAS
criminal recidivism dataset (Larson et al., 2016). Here, the
model predicts the recidivism of an individual based on
their demographics and criminal history with race being the
protected attribute. To make the presentation more clear,
we exacerbate the racial bias by removing 500 samples of
positive outcomes (no recidivism) for African-Americans.
Data functions from the AIF360 library are used for this
dataset. Results for the unmodified German Credit dataset
are qualitatively equivalent (see Appendix B).

In line with the synthetic results, the OPT approaches are
not influenced by the protected attributeZ and, with respect
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Figure 2. Averaged absolute SHAP for the two features most cor-
related with the protected attribute and fairness measures for the
evaluated models on the COMPAS dataset. Error bars show 95%
confidence intervals.

to the traditional model, preserve the influence for the two
attributes most correlated withZ in this real-world scenario
(blue and red in the top row of Figure 2). While most of the
evaluated models outperform the OPT models for the fair-
ness measures, they are either influenced by the protected
attribute or do not preserve the influence of at least one of
the most correlated attributes and have significantly lower
accuracy (Appendix A). Therefore, as with the synthetic
results, the changes in influence for these attributes indi-
cate that these methods induce indirect discrimination dur-
ing training, despite having better performance for certain
fairness measures.

5. Conclusions
The presented results shed a new light on the problem of
discrimination prevention in supervised learning. First, we
propose a formal definition of induced discrimination, in-
spired by research in humanist fields (Altman, 2016) and
discrimination via association (Wachter, 2019). We mea-
sure influence of features to capture induced discrimina-
tion. Second, we show that state-of-the-art methods ad-
dressing discrimination can return biased models influ-
enced by the protected attribute or attributes associated
with it when they are trained on potentially discrimina-
tory datasets. Third, we propose an optimization-based
method for discrimination prevention. The method drops
the protected attribute and preserves the influence of non-
protected attributes to prevent the induction of discrim-
ination via association. These results provide support
for the use of the optimization approach in the circum-
stances where discrimination could have affected the train-
ing dataset.
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