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Abstract
We introduce Societal Norm Bias (SNoB), a sub-
tle but consequential type of discrimination that
may be exhibited by machine learning classifica-
tion algorithms, even when these systems achieve
group fairness objectives. This work illuminates
the gap between definitions of algorithmic group
fairness and concerns of harm based on adher-
ence to societal norms. We study this issue
through the lens of gender bias in occupation
classification from online biographies. We quan-
tify SNoB by measuring how an algorithm’s pre-
dictions are associated with gender norms. This
framework reveals that for classification tasks re-
lated to male-dominated occupations, fairness-
aware classifiers favor biographies whose lan-
guage aligns with masculine gender norms. We
compare SNoB across fairness intervention tech-
niques, finding that post-processing interventions
do not mitigate this bias at all.

1. Introduction
As automated decision-making systems play a growing role
in our daily lives, concerns about algorithmic unfairness
have come to light (Buolamwini & Gebru, 2018; Noble,
2018; Stark et al., 2020). To avoid algorithmic discrimi-
nation based on sensitive attributes, various approaches to
measure and achieve fairness have been proposed. These
approaches are typically based on group fairness, which
partitions a population into groups based on a protected at-
tribute (e.g. gender, race, religion) and then aims to equalize
some metric of the system across the groups.

Group fairness makes the implicit assumption that a group is
defined solely by the possession of particular characteristics
(Hu & Kohler-Hausmann, 2020), ignoring the heterogeneity
within groups. It does not account for the complex, multi-
dimensional nature of concepts like gender and race (Hanna
et al., 2020; Butler, 2011), thus overlooking the various
axes along which bias may occur, such as an individual’s
adherence to societal norms.

We characterize Societal Norm Bias (SNoB)—the associ-
ations between an algorithm’s predictions and individuals’

adherence to societal norms—as a source of algorithmic
unfairness. We study SNoB through the task of occupation
classification on a dataset of online biographies. In this set-
ting, masculine/feminine SNoB occurs when an algorithm
favors biographies written in ways that adhere to mascu-
line/feminine gender norms, respectively. We examine how
existing fairness intervention techniques, based on categori-
cal gender labels, neglect this issue. Discrimination based
on gender norms has implications of concrete harms, which
are documented in the social science literature (Section 2.3).

Our approach measures how an algorithm’s predictions are
associated with masculine or feminine gender norms based
on natural language features. This framework quantifies an
algorithm’s bias on another dimension of gender beyond
explicit binary labels. Using this framework to evaluate
fairness interventions, we analyze the differences among
how these approaches encode gender norms. We find that
approaches that improve group fairness still exhibit SNoB.
In particular, post-processing approaches are most closely
aligned to gender norms. These associations may lead to rep-
resentational and allocational harms for feminine-expressing
people in male-dominated occupations (Bartl et al., 2020;
Blodgett et al., 2020). Furthermore, when fairness-aware
algorithms exhibit SNoB, these harms are not only perpetu-
ated but also obscured by claims of group fairness.

2. Background
2.1. The Multiplicity of Gender

The term “gender” is used as a proxy for different ideas
depending on the context (Keyes et al., 2021). It may mean
gender identity, which is one’s “felt, desired or intended
identity” (Glick et al., 2018), or gender expression, which
is how one “publicly expresses or presents their gender...
others perceive a person’s gender through these attributes”
(Commission). These concepts are also related to gender
norms, i.e. “the standards and expectations to which women
and men generally conform,” including personality traits,
behaviors, occupations, and appearance (Agius & Tobler,
2012). These various notions of social gender encompass
much more than the categorical gender labels that are used
as the basis for group fairness approaches (Cao & III, 2019).
We focus on discrimination related to the ways that individ-
uals’ gender expression adhere to societal gender norms.
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2.2. Gender Bias in Automated Hiring

Audit studies reveal that employers tend to discriminate
against women (Bertrand & Mullainathan, 2004; Johnson
et al., 2016). These biases are also replicated in automated
hiring. For example, previous work measures the gender gap
in error rates of an occupation classification algorithm (De-
Arteaga et al., 2019). Many in academia and industry alike
have been motivated to mitigate these concerns (Raghavan
et al., 2020; Bogen & Rieke, 2018; Sánchez-Monedero et al.,
2020). LinkedIn developed a post-processing approach for
ranking candidates so that their candidate recommendations
are demographically representative of the broader candidate
pool; their system is deployed across a service affecting
more than 600 million users (Geyik et al., 2019). Other
intervention techniques have also been proposed (Dwork
et al., 2018; Romanov et al., 2019). These approaches share
a reliance on categorical gender labels to measure fairness.

2.3. Harms Related to Gender Norms in the Workplace

Our concerns about the use of gender norms in machine
learning systems are grounded in studies of how gender
norms have been operationalized in various occupations,
causing harm to gender minorities. It is well-established
that “occupations are socially and culturally ‘gendered’”
(Stark et al., 2020); many jobs in science, technology, and
engineering are perceived as masculine (Ensmenger, 2015;
Light, 1999). Women in these fields have been found to
perform their gender in particular ways to gain respect and
acceptance from their peers, in turn fostering a “masculine”
environment that is hostile to women (Powell et al., 2009).

In social psychology, descriptive stereotypes are attributes
believed to characterize women as a group. Heilman (2001;
2012) study how the perceived lack of fit between feminine
stereotypic attributes and male gender-typed jobs result in
gender bias and impede women’s careers.

When these patterns are replicated by SNoB in machine
learning algorithms, this results in two types of harms. The
associations that we highlight may lead to 1) representa-
tional harm, when actual members of the occupation are
made invisible, and 2) allocational harm, when certain in-
dividuals are allocated fewer career opportunities based on
their gender (Bartl et al., 2020; Blodgett et al., 2020).

3. Methods
To study SNoB, we focus on the use of gender norms in
occupation classification, a component of automated re-
cruiting. We assume that a “fair” occupation classification
algorithm should not exhibit gender bias, including SNoB,
since someone’s career potential is not related to their gen-
der. There ought to be no association between the classifier’s
predictions and any concept of gender (pronouns, expres-

sion, etc.). However, unlike for gender pronouns, there is
no ground-truth label for other notions of gender in our bi-
ography dataset. Thus, we use a data-driven approach to
measure each biography’s adherence to gender norms. We
validate this approach by comparing it to crowd-sourced
notions of gender norms. We then compare the degree to
which individuals’ adherence to gender norms is correlated
with occupation classification predictions. We introduce
metrics to quantify masculine and feminine SNoB in occu-
pation classifiers on two different scales: single occupation
association and cross-occupation association.

3.1. Occupation Classification

3.1.1. DATASET

We use the dataset1 and task described by De-Arteaga et al.
(2019). The dataset, containing 397,340 biographies span-
ning twenty-eight occupations, is obtained by filtering the
Common Crawl for online biographies.

Each biography is labeled with its gender based on the
use of “she” or “he” pronouns; biographies that contain
neither pronoun are excluded. (In Appendix C, we study
a small set of biographies with nonbinary pronouns.) Let
Hc, Sc be the sets of biographies in occupation c using
“he” and “she” respectively. |Hc|, |Sc| are the numbers of
biographies in the respective sets. To preserve the ratios
between |Hc| and |Sc|, we use a stratified split to create the
training, validation, and test datasets, containing 65%, 10%,
and 25% of the biographies respectively. We use the data to
train and evaluate an algorithm that predicts a biography’s
occupation title from the subsequent sentences.

3.1.2. SEMANTIC REPRESENTATIONS

For the occupation classification algorithm, we use three
semantic representations with different degrees of complex-
ity: bag-of-words, word embeddings, and BERT. In the
bag-of-words (BOW) representation, a biography b is rep-
resented as a sparse vector of the frequencies of the words
in b. BOW is widely used in settings where interpretability
is important. In the word embedding (WE) representation,
b is represented by an average of the fastText word embed-
dings (Bojanowski et al., 2017; Mikolov et al., 2018) for the
words in b. Previous work demonstrates that the WE rep-
resentation captures semantic information effectively (Adi
et al., 2016). For the BOW and WE representations, we
train a one-versus-all logistic regression model with L2 reg-
ularization on the training set, as done by De-Arteaga et al.
(2019). The BERT contextualized word embedding model
(Devlin et al., 2018) is state-of-the-art for various natural
language processing tasks, and it has been widely adopted
for many uses. Unlike the other language representations,

1The dataset is publicly available at http://aka.ms/biasbios.
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a biography’s encoding is context-dependent. We fine-tune
the BERT model, which pre-trains deep bidirectional repre-
sentations from unlabeled English text (Wolf et al., 2020),
for the occupation classification task.

3.2. Quantifying Gender Norms

We leverage the natural language properties of our biog-
raphy dataset to measure how much a biography’s gender
expression aligns with societal norms. There are many
differences in the ways that language is used to describe
people of different genders (Menegatti & Rubini, 2017), and
in the ways that people of different genders choose to use
language (Argamon et al., 2003). Gender also affects the
ways that people are perceived (Madera et al., 2009). See
Appendix A for details.

One brute-force way to measure biographies’ adherence to
gender norms is to obtain crowdsourced gender ratings for
every word used in the dataset, and then score each biogra-
phy using these ratings. Because human-labeled corpora of
gendered words (Crawford et al., 2004; Cryan et al., 2020)
are limited to a few hundred words, while our biography
dataset has tens of thousands of unique words, we take a
machine learning approach to quantify these notions rather
than relying on the human-labeled corpora alone. We train
a classifier G on the biographies dataset to distinguish be-
tween whether a biography is labeled with “she” or “he.” For
an individual biography, we use G’s predicted probability
of “s/he” as a measure of how much the biography aligns
with feminine/masculine gender norms.

To validate that G learns a meaningful notion of gender
norms, we compare its similarity to human-labeled gender
scores. Specifically, for a corpus of 600 words with gender
scores labeled via crowdsourcing (Crawford et al., 2004), we
compare G’s weights of these words to the human-labeled
gender scores reported in the study. We find a strong corre-
lation (Pearson’s r-value 0.76) between these values. See
Appendix Figure 3 for details. Also, in Appendix E, we
perform a robustness test using a gender classifier that omits
occupation-relevant words.

3.3. Measuring Masculine and Feminine SNoB

For a given biography b, the occupation classification algo-
rithm Yc outputs the probability Yc(b) that the individual
belongs to occupation c. The gender classifier G outputs the
probability G(b) that the individual’s biography is labeled
with “she”. To evaluate SNoB, we use the correlation rc

between G(b) and Yc(b), the predicted probabilities from
the two classifiers, across the “she” bios in the occupation.
Specifically, we compute Pearson’s correlation coefficient
rc between {Yc(b)|b 2 Sc} and {G(b)|b 2 Sc}. The magni-
tude of rc is a measure of the degree of SNoB exhibited by
the occupation classifier. A positive/negative value indicates

that more feminine/masculine language is rewarded by Yc.

Consider pc = |Sc|
|Sc|+|Hc| , i.e. the fraction of biographies

in occupation c that use “she.” If pc < 0.5, c is male-
dominated, and vice versa. We find that rc is more neg-
ative in more male-dominated occupations, i.e. individuals
whose biographies are more aligned to masculine gender
norms are also more likely to be correctly predicted by the
occupation classification algorithm. Since rc is computed
from Sc, these associations are present within the gender
group. Thus, classification for male-dominated occupations
algorithms operationalize gendered language, privileging
not only the referential gender of pronouns but also the “she”
biographies with more masculine words and writing styles.

We observe a trend between rc and pc: in more gender-
imbalanced occupations, rc is larger in magnitude. Let
rC = {rc|c 2 C}, p

C
= {pc|c 2 C} 2 [0, 1]|C|, where C

is the set of occupations. The covariance COV(p
c
, rc) quan-

tifies this trend for an algorithmic approach across all the
occupations. We use covariance rather than correlation be-
cause the latter does not capture the range of the values,
i.e. the magnitude of the slopes in Figures 1 and 2, while
for an individual classifier, we use correlation rc since the
range is less important than the relative rankings across the
individuals in Sc.

Figure 1. SNoB Across Occupations. The extent to which an
algorithm’s predictions align with gender norms (y-axis) is corre-
lated with the gender imbalance in the occupation (x-axis). Ideally,
without any SNoB, the correlation rc = 0, so every point would
lie on the dotted red line. Other representations (BOW, BERT)
have similar trends. Note that these values are the same for the
fairness-unaware approach as the post-processing approach.

4. Analysis of Fairness Approaches
We evaluate two paradigms of algorithmic group fairness
approaches, post-processing and in-processing techniques.
These approaches are based on the goal of mitigating
GapRMS, the group fairness metric used by Romanov et al.
(2019) and De-Arteaga et al. (2019); see Appendix B for
details. We present these approaches and compare their
SNoB.
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Figure 2. Comparing fairness interventions. While SNoB per-
sists across group fairness interventions, it is somewhat mitigated
by the in-processing approaches; the slopes of their best-fit lines,
which correspond to COV(pc, rc) , are smaller than that of PO.

4.1. Fairness Intervention Techniques

Post-processing (PO) fairness approaches apply an inter-
vention after training the algorithm to balance some metric
across groups (Pleiss et al., 2017; Kamiran et al., 2012;
Lohia et al., 2019; Hardt et al., 2016). PO is relatively cost-
effective and has been deployed in large-scale automated
recruiting systems (Geyik et al., 2019). Since PO techniques
do not change the ordering within a group, rc remains identi-
cal to that of the approach without any fairness intervention
(Figure 1). Thus, the interventions may continue to privilege
individuals who align with the occupation’s gender norms.

We also consider various in-processing group fairness ap-
proaches, which modify the algorithm at training time. In
the decoupled (DE) approach, a separate classifier is trained
for each groups (Dwork et al., 2018). In the reductions ap-
proach (RE), a classification task is reduced to a sequence of
cost-sensitive classification problems (Agarwal et al., 2018).
RE is the primary in-processing mitigation method in the
Fairlearn Python package (Bird et al., 2020). Covariance
Constrained Loss (CoCL) adds a constraint to the loss func-
tion that minimizes the covariance between an individual’s
predicted probability and the word embedding of their name.
Romanov et al. (2019) validate CoCL’s effectiveness in re-
ducing GapRMSon the same biographies dataset.

4.2. Comparing Approaches

We use COV(p
c
, rc) (Section 3.3) to compare the associa-

tions for different fairness approaches (Figure 2, Table 1).
The PO approach has the largest value of COV(p

c
, rc) ,

i.e. the strongest associations with gender norms. For
PO, the predicted probabilities and within-group ranking
of the individuals are unchanged from the fairness-unaware
occupation classification algorithm. Even when the de-
sired statistical metric is perfectly met, i.e. GapRMS= 0,
these correlations remain. For PO, the group fairness and
SNoB metrics seem to be unrelated; the mitigation of

Table 1. Although post-processing (PO) fairness intervention tech-
niques mitigate GapRMSthe most, they have higher values of
COV(pc, rc) compared to in-processing approaches. This suggests
that the latter are more effective at reducing SNoB than PO. For
BOW and WE, the one-versus-all Yc accuracy is averaged across
all occupations. For BERT, the model is a multi-class classifier.

Approach Yc Accuracy GapRMS COV(pc, rc)
BOW, PO 0.95 0 0.023
BOW, DE 0.96 0.10 0.014
BOW, CoCL 0.96 0.086 0.021

WE, PO 0.97 0 0.046
WE, DE 0.94 0.060 0.040
WE, RE 0.88 0.035 0.022

BERT, PO 0.85 0 0.021
BERT, DE 0.85 0.22 0.021

one is not informative about the presence of the other.
The in-processing approaches (DE, RE, CoCL) mitigate
this observed association since their COV(p

c
, rc) are lower

compared to that of PO. However, COV(p
c
, rc) remains

nonzero, which suggests that gender norms continue to
be leveraged in these approaches (see Appendix D for
more analysis on the mechanisms). Since in-processing
approaches are typically more expensive to implement than
PO, there are trade-offs between ease of implementation,
classifier accuracy, and association with gender norms. Un-
like in PO, there are more complex relationships between
GapRMS and COV(p

c
, rc) for in-processing approaches.

Both GapRMS and COV(p
c
, rc) are larger for WE, DE

than WE, RE (Table 1). While BOW, CoCL has larger
COV(p

c
, rc) than BOW, DE approaches, its GapRMS is

smaller. This suggests that there is no straightforward corre-
spondence between GapRMS and COV(p

c
, rc) .

5. Future Work
We measure associations between algorithmic predictions
and gender norms in occupation classification, revealing
that SNoB is the strongest in post-processing approaches.
Since occupation classification is a subtask of automated re-
cruiting, the associations may have significant consequences
in people’s lives.

More broadly, we characterize how algorithms may discrim-
inate based on SNoB, a non-categorical aspect of a sensitive
attribute. By illuminating the axes along which discrimi-
nation may occur, our work sets the stage for progress in
mitigating these harms. We hope to explore algorithmic
approaches to reducing these associations as well as socio-
technical considerations of how the intersectionality (Cren-
shaw, 1990) between different dimensions of a sensitive
attribute affects an algorithm.
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