
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

An Empirical Investigation of Learning from Biased Toxicity Labels

Anonymous Authors1

Abstract
Collecting annotations from human raters often re-
sults in a trade-off between the quantity of labels
one wishes to gather and the quality of these la-
bels. As such, it is only possible to gather a small
amount of high-quality labels. In this paper, we
study how different training strategies can lever-
age a small dataset of human-annotated labels and
a large but noisy dataset of synthetically generated
labels (which exhibit bias against identity groups)
for predicting toxicity of online comments. We
evaluate the accuracy and fairness properties of
these approaches, and whether there is a trade-off.
While we find that pre-training on all of the data
and fine-tuning on clean data produces the most
accurate models, we could not determine a single
strategy that was better across all fairness metrics
considered.

1. Introduction
Supervised learning requires large amounts of labeled data,
often human-annotated. This creates a trade-off. Human
raters are imperfect and introduce bias and variance into
their labels (Geva et al., 2019). When given enough time
and resources, the quality of such labels can improve dra-
matically (Stiennon et al., 2020). Hence, given a fixed bud-
get, there is a trade-off between label quality and quantity.
One possible solution to this trade-off is to create a large
amount of cheap, low-quality labels and a small amount of
expensive, high-quality labels. This enables novel training
approaches that use high-quality labels to minimise biases
learnt from low-quality labels (Xiao et al., 2015; Ren et al.,
2018; Zhang et al., 2020; Song et al., 2020).

In this work, we explore different ways to train a fair textual
toxicity (Wulczyn et al., 2017; Dixon et al., 2018; Borkan
et al., 2019) classifier in this regime. We have access to a
small amount of high-quality labels and a large amount of
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low-quality labels. Our low-quality labels exhibit fairness-
relevant biases, in particular, systematic differences in accu-
racy and predicted toxicity rate for different identity groups.
Natural language is a particularly compelling context to
study, as the field has seen recent rapid progress (Devlin
et al., 2018; Brown et al., 2020) and models are becoming
increasingly widely deployed, yet often exhibit bias (Dixon
et al., 2018; Kurita et al., 2019; Sap et al., 2019).

We formalise this as a noisy labels problem, where we have
a dataset of noisy labels (low-quality) and of clean labels
(high-quality). To study this problem, we build a setup with
the following key properties:

Labeler type The training data is annotated with labeler
type - we know whether each data point is clean or noisy,
and we have data of each type. This is in contrast to work
that assumes we can only train on the noisy data (Jiang &
Nachum, 2019).
Imbalance We have significantly more noisy data than
clean data
Complex bias The biases are difficult to model precisely
and often qualitative, as they emerge from human judge-
ment. This is in contrast to prior work that models noisy
labels as flipping labels between classes according to a
transition matrix, independent of the input (Hendrycks
et al., 2018; Lamy et al., 2019)

We focus on the Civil Comments dataset (Borkan et al.,
2019), a collection of online comments annotated as toxic
or non-toxic. This is suitable for a study of fairness as
comments are annotated by identity references, enabling
measurement of unintended bias against protected groups.

Similarly to Gu et al. (2021), we synthetically generate noisy
labels, as there is no preexisting clean/noisy label split in the
Civil Comments dataset. We treat the human labels as clean
and train models on the human labels to generate synthetic
labels. We explore several standard approaches to training
models from imperfect data. We evaluate their accuracy and
bias, and whether there is a trade-off between the two.

We find that pre-training on all of the data and then fine-
tuning on the clean data is the best way to train an accurate
model. Measuring fairness is more complex, and the right
approach depends on the specific context where a model
will be applied (Barocas et al., 2017). Accordingly, we
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use the fairness-relevant metrics introduced by Borkan et al.
(2019) to evaluate a range of possible biases. We focus on
metrics that measure systemic differences in accuracy and
systematic differences in predicted toxicity rate for different
demographic groups. We find that no single model performs
best on all metrics.

2. Methods
In this section we detail our experimental setup and base-
lines. In Section 3 we discuss the measurement of the accu-
racy and fairness properties of our baseline and robustness
checkss. In Section 4 we summarise our findings.

2.1. Data

For our investigation, we create noisy (biased) and clean
(less biased) datasets based on the Civil Comments dataset,
a collection of almost two million online comments labeled
as toxic and non-toxic. We follow the approach set out
in Gu et al. (2021) to synthetically generate noisy labels
for a dataset without a well-defined clean/noisy label split.
Our models are based on a pre-trained BERT (Devlin et al.,
2018) encoder, followed by a 2 layer MLP. We train them
on both the clean and noisy datasets, validate on clean data
only.

The original human labels are our clean labels and to create
the noisy labels, we train networks to imitate these human-
annotated labels. We then use these synthetic raters to gen-
erate synthetic labels for each comment, our noisy labels.
To ensure a suitable level of noise, we stop training the net-
works before convergence, attaining a validation set accu-
racy of 95%. To avoid the synthetic labels being memorised
from the training data, we hold-out half of the dataset when
training the synthetic raters and only generate synthetic
labels for the held-out portion.

We create our clean and noisy datasets for training our base-
lines from the held-out portion. We re-label 95% with noisy
labels (i.e. discard the original clean label for that subset of
data points), and the other 5% retains the original human
label. This ensures an imbalance between clean and noisy
dataset size, as desired.

Prior work has shown that networks trained on this dataset
develop biases for or against identity groups, where dif-
ferent groups have systematic differences in accuracy and
predicted toxicity rates (Dixon et al., 2018; Borkan et al.,
2019). This is in part because the dataset contains correla-
tions where comments mentioning certain identity groups
are more or less likely to be toxic, and models tend to exag-
gerate this bias (Borkan et al., 2019). Thus our noisy labels
exhibit bias relative to the human labels, as required for our
analysis. While the original human labels may also exhibit
bias, we refer to them as clean to indicate that they are less

biased, not that they are unbiased.

Naturally, this approach has the key limitation that our noisy
labels are synthetically generated, rather than being gener-
ated by true human labelers. We are limited by the lack
of publicly available datasets with well-defined clean/noisy
splits, and which allow us to measure fairness properties.
As argued in Gu et al. (2021), we consider our approach a
useful simulation of human bias. Neural network errors are
complex and difficult to model, and share similarities with
human error that simpler synthetic methods miss, such as
having a higher error rate on harder examples.

See Appendix A for a more detailed discussion of how we
generate this data, the properties of our noisy dataset and
the limitations of this approach.

2.2. Baselines

We train several baselines on this synthetic dataset. All
models are based on a pre-trained BERT (Devlin et al.,
2018) encoder, followed by a 2-layer MLP. When training,
we update the weights of both BERT and the MLP. All data
points are of the form (k, x, y), where x is the comment
text, the labeler type k ∈ {C,N} represents whether the
label is clean or noisy, and y is the comment label. We train
on 878,620 noisy and 46,232 clean data points.

We evaluate the following strategies:

Clean The model just trains on the clean data (5% of the
total training data)
Naive The model trains on both clean and noisy data, and
ignores the labeler type
Multi-head The model has two heads, and uses one for
clean data points, one for noisy data points. Parameters in
all prior layers are shared
One-hot The labeler type is one-hot encoded and ap-
pended to the BERT output before entering the MLP. A
variant of multi-head.
Loss correction (Patrini et al., 2017) The noisy data is
modelled as a corrupted version of the clean data, where
for each pair of classes there is a certain fixed probability
that each element of the first is corrupted to the second.
The parameters of the corruption matrix are estimated
from the available clean data, and applied to the model
outputs when predicting noisy labels. No corruption is
applied when predicting clean labels.

We further fine-tune each baselines (except Clean) on clean
data. We denote this by appending the suffix FT to name of
the baseline.
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Figure 1. AUC for each baseline. The vertical line is the start of
fine-tuning. Before fine-tuning, multi-head performs best. After
fine-tuning all baselines improve and AUC difference become
smaller.

3. Experiments
3.1. Accuracy

We first measure the performance of each baseline, as mea-
sured by Area Under the ROC Curve (AUC) with respect to
the clean labels. The results for each baseline can be seen
in Figure 1. This is calculated as AUC on the validation set,
which has only clean labels. We observe that fine-tuning
performs best (with a final AUC of 94.9%), then multi-head
(with 94.7%), and then clean, naive and one-hot all perform
similarly (between 94.2% and 94.3%). Notably, after fine-
tuning all methods obtain similar performance (between
94.86% and 94.94%) despite there being significant varia-
tion in performance before fine-tuning. While we primarily
use AUC to measure accuracy due to significant class imbal-
ance, we note that our reported ordering between baselines
is robust to alternate metrics such as binary accuracy and
cross-entropy loss.

3.2. Fairness

3.2.1. METRICS

To measure fairness we use the fairness-relevant metrics
introduced by Borkan et al. (2019), a common method for
measuring bias in textual toxicity classification tasks (Con-
versation AI, 2019; Nozza et al., 2019; Zorian & Bikkanur,
2019). The Civil Comments Identities dataset is a subset
of Civil Comments with annotations for whether each com-
ment is a member of 13 identity groups, covering a range of
race, religion, sexuality and gender considerations, allow-
ing us to evaluate these metrics for each identity group. In
particular, we focus on three of the metrics:

Subgroup AUC Evaluate the AUC of the model on each

subgroup.
Background Positive, Subgroup Negative AUC
(BPSN AUC) Evaluate the AUC of the model on the
non-toxic data points of the subgroup and toxic data
points not of the subgroup.
Negative Average Equality Gap (Negative AEG) Ran-
domly select a non-toxic data point from the subgroup and
a non-toxic data point not of the subgroup. Evaluate the
proportion of the time that the model’s predicted toxicity
is higher for the subgroup data point. We subtract 0.5, so
that an unbiased model has 0 Negative AEG.

We focus on these metrics as they measure two biases ex-
hibited in our noisy data: systematic differences in accuracy
between different identity groups and systematic differences
in predicted toxicity rate between different identity groups.
Subgroup AUC measures differences in performance, Neg-
ative AEG measures differences in predicted toxicity rate,
and BPSN AUC measures both (Borkan et al., 2019).

We distinguish between accuracy-based metrics which cor-
relate with overall AUC, and accuracy-agnostic metrics
which do not. Subgroup AUC and BPSN AUC are accuracy-
based as they measure model AUC on subsets of the data.
Negative AEG is accuracy-agnostic, as a uniformly random
classifier has a perfect Negative AEG of 0.

3.2.2. RESULTS

We measure the Subgroup AUC, BPSN AUC and Negative
AEG for each baseline, for each of 13 identity groups. The
results are displayed in Figure 2. We aggregate the metrics
across the 13 identity groups by taking the arithmetic mean.
Alternate approaches such as weighting by identity group
size give similar results, and ordering is consistent across
subgroups.

For the Subgroup AUC and BPSN AUC metrics, the fine-
tuned baselines exhibit least bias, followed by multi-head.
However, this is the same ordering as overall AUC, as shown
in Figure 1. As these metrics are accuracy-based and corre-
late with overall AUC, it is difficult to determine whether
this effect is due to lower bias, or a consequence of higher
overall AUC.

For the Negative AEG metric, the clean baseline exhibits the
least bias. We find that all algorithms leveraging the noisy
data introduce bias. Negative AEG is an accuracy-agnostic
metric, suggesting that the performance of fine-tuning on
Subgroup AUC and BPSN AUC may be attributed to higher
overall AUC rather than decreased bias.

However, the difference in bias, though statistically signif-
icant, is slight and all baselines exhibit notable bias. The
probability of classifying a subgroup data point as more
toxic increases from 17.7% for clean to 18.2% for one-hot.
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Figure 2. The Subgroup AUC, Background Positive Subgroup Negative AUC (BPSN AUC) and Negative Average Equality Gap (Neg
AEG) for each baseline, averaged over the 13 identity groups. Each baseline was run 5 times with different seeds, and the mean and
standard deviation of the aggregated metric are plotted. Low Subgroup AUC and BPSN AUC and high Neg AEG indicate bias.

3.3. Robustness Checks

To investigate the robustness of our results, we explore
the sensitivity to the level of noise. We generate a new
synthetic dataset of higher quality noisy labels, reproduce
our baselines and measurements and compare the results
to our results for lower quality noisy labels. We produce
higher-quality noisy labels by training our synthetic raters
on more data points than before: 880,000 data points with
batch size 16, in comparison to 220,000 data points with
batch size 4. The accuracy of the noisy labels relative to
the clean labels increases from 95% to 95.5% and the AUC
increases from 96% to 97%.

Overall AUC for each baseline on the higher quality noisy
labels is shown in Figure 3. Fine-tuning has highest overall
AUC, though is an improvement on naive of 0.1%, in com-
parison to an improvement of 0.6% before. Multi-head AUC
is similar to naive and one-hot. The orderings for fairness
metrics are similar to before: the accuracy-based metrics,
Subgroup AUC and BPSN AUC, have the same ordering as
overall AUC and clean remains least biased under Negative
AEG. We discuss this experiment further in Appendix C.

It is clear that performance will depend on the degree of
difference between clean and noisy data. However, this
was an unexpected level of sensitivity and suggests that the
results of this paper may be fairly context-specific.

4. Conclusion
In this work, we conducted an empirical investigation into
learning from biased labels for toxicity prediction, using
synthetic labels from a neural network as a proxy for noisy
human labels. With respect to AUC, fine-tuned models
performed best on our original dataset. With respect to
fairness metrics, no single model performed best for all
metrics – while fine-tuning exhibited the least bias on the
accuracy-based metrics of Subgroup AUC and BPSN AUC,
the approach of ignoring noisy labels entirely exhibited the
least bias on the accuracy-agnostic Negative AEG metric.
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Figure 3. Baseline AUC on higher-quality noisy data. The vertical
dashed line shows the switch to fine-tuning. The clean baseline
uses early stopping. Each baseline was run 5 times with different
seeds.

As training machine learning models on large amounts of
loosely curated data becomes commonplace, it is essential
that we understand the effects of imperfect labels on accu-
racy and fairness of the resulting models. We recommend
caution in extrapolating to other contexts based on these
results – we only study a single dataset with synthetically
generated labels, and different comparisons may result from
different noise characteristics. Nevertheless, we hope this
work provides a useful set of empirical observations towards
this important question.
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