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Abstract

A plug-in algorithm to estimate Bayes Optimal
Classifiers for fairness-aware binary classifica-
tion has been proposed in (Menon & Williamson,
2018). However, the statistical efficacy of their
approach has not been established. We prove that
the plug-in algorithm is statistically consistent.
We also derive finite sample guarantees associ-
ated with learning the Bayes Optimal Classifiers
via the plug-in algorithm. Finally, we propose a
protocol that modifies the plug-in approach, so
as to simultaneously guarantee fairness and dif-
ferential privacy with respect to a binary feature
deemed sensitive.

1. Introduction and Related Work

Bayes Optimal Classifiers (BOCs) (Devroye et al., 1996)
are of significant importance, since they achieve the least
average error possible for any classification task. However,
BOC:s are generally specified in terms of unknown distribu-
tional quantities. Constructing sound estimators for BOCs,
provided access to only a finite training sample, is thus
of utmost practical relevance. One approach to estimating
the BOC is through constructing ’plug-in’ estimators. The
plug-in principle applied to a broad class of problems, in-
cluding that of binary classification, is well studied in the
statistics literature (Audibert et al., 2007; Denis & Hebiri,
2017; Yang, 1999). Indeed, the existence of a plug-in clas-
sifier that is optimal in the minimax sense is established in
(Audibert et al., 2007; Yang, 1999). In their work, (Menon
& Williamson, 2018) propose a plug-in algorithm to esti-
mate the BOCs corresponding to fairness-aware learning
(FAL) tasks. However, (Menon & Williamson, 2018) do
not provide guarantees on the statistical efficacy of their
algorithm. In this paper, we plug this gap by proving that
the plug-in algorithm of (Menon & Williamson, 2018), is
indeed statistically consistent. We also characterise the
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sample complexity associated with the task of learning a
low regret classifier via the plug-in algorithm. Closest to
our work is that of (Chzhen et al., 2019), wherein an asymp-
totic study (for a different fairness aware plug-in classifier)
is carried out. The work of (Chzhen et al., 2019) however,
focuses on settings wherein perfect fairness constraints are
imposed. It is well established that due to inherent fairness-
accuracy trade-offs, ensuring perfect fairness without con-
siderable loss in accuracy is generally not possible (Menon
& Williamson, 2018; Zhao & Gordon, 2019; Chen et al.,
2018). We thus focus on approximate notions of two fair-
ness metrics, Demographic Parity (DPar) and Equality of
Opportunity (EO). Further, the approach of (Chzhen et al.,
2019) requires access to the sensitive variable (denoted Y’
hereon) at test time which is often not permitted. The plug-
in approach of (Menon & Williamson, 2018) however does
not necessitate test-time access to Y. Indeed, real-world
settings may impose even more stringent requirements on Y’
. For example, we may be required to ensure that our model
does not leak information about the sensitive attribute, Y,
corresponding to any individual. In such cases, a possible
solution is to protect individuals via Differential Privacy
(DP) (Dwork et al., 2006). The literature combining fair-
ness and privacy (Jagielski et al., 2019; Cummings et al.,
2019; Mozannar et al., 2020), is emerging and limited. Such
settings motivate us to propose an easy to deploy, modi-
fied version of the plug-in algorithm, referred to as DP
Plug-in. The framework ensures that Y is protected via
DP. Using publicly available data sets, we demonstrate em-
pirically, that the DP Plug-in algorithm achieves strong
privacy-fairness-accuracy guarantees, as it outperforms
the private, fair approach of (Jagielski et al., 2019) across 3
out of 4 experimental sets ups considered.

2. Background and Notation

For brevity, we only introduce the main features from
(Menon & Williamson, 2018) pertinent to our study in this
section. We present other useful definitions and results
from (Menon & Williamson, 2018) in section A of the
supplement. Additionally, our focus in the main thesis of
this paper will be on the approximate EO criterion for the
case when Y is unavailable during test-time. Analogous
(and relatively simpler) analyses for 1) the case when
Y is available at test time, and for 2) the approximate
DPar criterion are presented in sections B and C of the
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supplement for completeness.

Access to a finite training sample, S = {xi,y:,7;}i,
drawn i.i.d from some unknown distribution IP is assumed
in (Menon & Williamson, 2018). Vi€ [n] the triplet
(24,9:,7;) is a realisation of the random variable triplet
(X,Y,Y) comprising of the feature, label and sensitive
attribute respectively. Let n =P(Y =1), 71 =P(Y =1)
and 8 = P(Y = 1|Y = 1). Assume that 7,7, 5 > 0

Let (X,Y)~D, (X,Y|Y =1)~Dgo.f:x—[0,1]
denotes a  randomised  classifier on = mea-
surable domain x. f yields predictions via
(Y|X =z) ~ Bernoulli(f(x)). Regression functions
wrt.  D,Dgo are given by n(z) =P =1|X = z),
Mro(z,y) =P(Y = 1|X = z,Y = y) respectively.

A central object of interest in (Menon & Williamson, 2018),
is the notion of cost-sensitive risks (CSR). Denoting false
positive and negative rates of f w.r.t D, by FPRp(f) and
FNRp(f) respectively, the CSR of a classifier f w.r.t a
distribution D, parameterised by ¢ € [0, 1] is given by:
CS(f;D,c):=c(1—7) FPRp(f) + (1 — ¢)FNRp(f)

Definition 2.2 A binary classifier f, with correspond-

ing predictor Y admits Equality of Opportunity if:
PY =1y =1,Y =0)=P(Y =1[Y =1,Y = 1)

Thus, EO requires parity in the TPRs between groups as
explicated in Definition 2.2. Obtaining perfect fairness
while retaining non-trivial accuracy is generally not
possible, and so (Menon & Williamson, 2018) introduce
approximate measures of fairness which require the additive
or multiplicative disparity between prediction rates to be
small. A key lemma in (Menon & Williamson, 2018) draws
an equivalence between the super-level sets of approximate
fairness measures and CSRs. This in turn leads to a
reduction of the FAL problem to a problem with constraints
on cost-sensitive risks (The reader may refer to section A of
the supplement for a more thorough presentation of these
results). The FAL problem in (Menon & Williamson, 2018)
is thus posed in terms of CSRs as follows:

Problem 2.1 (Cost-sensitive FAL) For trade-off pa-
rameter A € R, and cost parameters c,¢ € (0, 1)2,
minimise the fairness-aware cost-sensitive risk:

Rra(f;D,Dro,c,¢,\) = CS(f; D, c) — A\CS(f; Do, )

Equipped with this soft constrained FAL problem for-
mulated in terms of CSRs, (Menon & Williamson, 2018)
derive the BOCs corresponding to such problems. We
present the BOC for approx. EO and the plug-in algorithm
of (Menon & Williamson, 2018) to estimate this BOC,
in Theorem 2.2 and Algorithm 1 respectively. It is this
(optimal) classifier and algorithm that will make for the key
objects of our theoretical analysis in Section 3.

Theorem 2.2 (BOC for FAL) Pick any costs c,c € (0,1)2
and trade-off parameter \ € R. Then:

Argmingp , (f; D, Dro) = {Ha o s* (z)|a € [0,1]}
where, s* (z) = {1 — % (Mgo(x,1) —E)} n(z) —c

and, Hy(z) = 1(z > 0) + ol(z = 0)

Algorithm 1 Plugin approach to FAL, EO setting

Input: Sample S = {z;,y;,7,;}i=, from distribution IP; cost
parameters c, ¢; trade-off parameter A

Estimate: 7 via # = 1 Y7 T{y; = 1}

Estimate: 7:y — [0, 1fusing appropriate CPE on {x;, y; }i—,
Estimate: 77, (x,Y) — [0, 1] using appropriate CPE on S
Compute: 5 (z) = {1 — 2(zo(z,1) — )} A(z) — ¢

Return: f (z) = H, (3 (z)) for any o € [0,1]

3. Theory

In this section, we analyse the asymptotic and non-
asymptotic properties of the plug-in algorithm (Algorithm
1). Recall from Problem 2.1, that our goal is to minimise the
fairness aware cost-sensitive risk, which for a given choice
of cost parameters ¢, ¢ € [0,1]? and trade-off parameter
A € R is given by CS(f;D,c) — ACS(f;Dro,?).

In the language of (Narasimhan et al., 2014), we introduce
the notion of performance measure. A performance mea-
sure, defined w.r.t a distribution IP, and performance metric
P, is a mapping from the space of measurable functions

F to the reals, i.e., ‘B% : F — R. In our setting, the
performance metric is simply given by the negative of the
objective function of Problem 2.1. Unless stated otherwise,

we will denote Do by D and 7, by 7 from hereon. Our
performance measure is given by:
Pr(f) = YV[TPRo(f), TNRp(f), 7, TPR5(f),
TNR5(f),8] = —{CS (f;D,c) = XCS (f;D,c)}

Thus, a classifier’s performance measure explains its merit

with regards to the combined, fairness-utility objective, ap-
propriately balanced by cost and trade-off parameters. Per-
formance metric ¥, makes explicit that our performance
measure is a function of the classifier’s TPRs and TNRs
with respect to D and D0, as well as distributional quanti-
ties m and . The CSRs, and thus the performance measure,
are linear in TPRs, TNRs and class probabilities implying
the performance measure is continuous in the arguments
of W. The regret of a classifier f, w.r.t performance mea-
sure P is defined as: regretp (f) = Pp* — PE(f) where,
Po* = PEL(f*). In our case, f* is the BOC introduced in
Theorem 2.2

3.1. Asymptotic Analysis

In this sub-section, we prove that the plug-in procedure
yields an estimator f which is W-consistent, implying
that regretg (f) %0, where % denotes convergence in

probability. We denote the estimators of 7,7 by 7 and 7
respectively. In order to proceed we make the following
assumptions:

Assumption1 Pxy_; (v(z) <c¢),Pxjy——1(7y(z) <¢),
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Pxiy_1,v-1 (v(z) <¢) and PX\Y:E?:—l (v(z) <¢) are
continuous at ¢, where ~(z) = (1 + 2%)n(z) — 27(z, )n(z),
i.e, v(x) is s*(z) in Theorem 2.2 without the constant term c

Assumption 2  Class probability estimators (CPEs)
P

A, are L-1 consistent, ie., Ex[n(z)—n(x)] >
0; Exy [0z, y) =z, y)|]] >0

Remark: As noted in (Narasimhan et al., 2014; Chzhen
et al., 2019), Assumption 2 is not a very strong one, as an
appropriately regularized ERM yields an L-1 consistent
class probability estimator for proper losses (Menon et al.,

2013; Agarwal, 2013).

Assumption 3 Domain x is compact and there exist con-
stants a, B € Ry, such that the PDFs, fx|y—_1, fx, fx|y=1
satisfy Ve e x, 0 < a < fxjy——1(x), fx(x), fx|y=1(z) < B

Remark: We make this assumption for technical con-
venience. This is akin to the ’strong density assumption’
defined in (Audibert et al., 2007). This assumption is not
necessary for the case when 'Y is available at test time, or
for either case relating to the approximate Demographic
Farity criterion

We now state our key lemma that facilitates the consistency
result. Denoting the estimator derived via the plug-in pro-

cedure for y(z) by §(x) = (1 + 2)A(x) — 27(z, 1)7(x),
we have:

Lemma 3.1 Provided Assumptions 2 and 3 hold, #
is L-1 consistent, i.e., Ex [|y(x) —4(z)[]] 20

The validity of Lemma 3.1 allows us to leverage the
proof template of (Narasimhan et al., 2014) which in turn
proves the plug-in algorithm’s consistency.

Theorem 3.2 Provided Assumptions 1, 2 and 3

hold, the plug-in algorithm is W-consistent, i.e., the
P o,k

algorithm yields f = sign o {5 — ¢}, s.t., Pu(f) 5 P,
ie., regretip(f) 50

Proof sketch: Lemma 3.1 and Assumption 1 allow

us to show that the plug-in yields an estimator f which is
S.t.:

TPRp(f) % TPRp(f*); TNRp(f) &> TNRp(f*)
TPR5(f) 5 TPRs(f*); TNR5(f) &> TNR5(f*)

The result then follows by the Continuous Mapping The-
orem (Mann & Wald, 1943), since V¥ is continuous in its
arguments. Complete proofs and detailed discussion for the
results presented in this section can be found in section B of
the supplement.

3.2. Non-Asymptotic Analysis

In this section, our objective is to characterise the sample
complexity requirements associated with learning a clas-

sifier that yields small regret, via the plug-in algorithm of
(Menon & Williamson, 2018). In our problem formulation,
the performance measure of a classifier, is a linear function
of its true positive and true negative rates. This implies
that the performance measure is non-decomposable, since
it cannot be expressed as a summation/ expectation over
individual instances. This is contrary to the case associated
with most standard loss functions that feature in the
ML literature, and thus the finite-sample analysis for
our performance measure is non-standard. We provide
a strategy that allows us to precisely relate the sample
complexity of this task to the sample complexity associated
with learning the regression functions, n and 7, as well
as other distributional quantities. We defer the detailed
derivation of this strategy to section C of the supplement.
We assume in this section that, 7 = P(Y = 1) is known.
While we can remove this assumption and modify our
analysis to obtain equivalent results, we found doing
so makes the underlying algebra/ geometry much more
convoluted, without adding significant insight. Thus, for
simplicity, we proceed by assuming 7 is known.

Recall, by Assumption 2, that we are working in a
setting wherein the class probability estimators (CPEs),
7,7 are L-1 consistent. Convergence in the L-1 norm
implies convergence in probability, so we can meaningfully
define the sample complexity associated with learning the
regression function 7 via the CPE #:

Definition 3.4 The sample complexity of learning 0, is a
mapping m,, : (0,1)3 — N, where m,((¢,8),8) is the
minimal (integer) number of training samples required to
ensure that, with probability = (1 —9): Px(In(z) —H(z)| =
€) <4

Note, we show in Lemma B.1 of the supplement that 7(-, 1)
is also L-1 consistent. The sample complexity of learning
7(-, 1) is thus analogously defined, and we denote this by
mz. Our non-asymptotic result is derived via a geometric
argument based in the plane of regression functions, i.e., the
(m(-,1),n)-plane. We define some key objects pertaining
to our derivation. Consider in the (7(-, 1), n)-plane, the
hyperbola H (X, m,c,¢) := {(1+ 2%)n — 27(-,1)n — ¢ = 0}.
Also, for € € (0, %), let X s := {x € x : the square of length 2¢
centred at (T(x, 1), n(x)) intersects the hyperbola H(\, , ¢, ) in
the (1(-,1),n)-plane}. Having defined H (X, 7, ¢,¢) and Xy,
we now state our non-asymptotic result:

Theorem 3.5 Let §, 5/76 e (0, %) Pick any t > Q =
4G{maz{c(l — ), (1 — c)m, |A[e(1 — B),|A|(1 — ) B}}, where

G =maz{8, £ E Lﬁ)} and B = § +Px(Xum). Pro-

T Tor mf w(is
. &y 8y 8 -
vided access to n = max{m,((¢, %), §), mz((¢, %), §)} train-
ing samples drawn i.i.d. from P, the plug-in algorithm yields

an estimator f, such that, with probability at least (1 — §)

regrets(f) <t
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Proof sketch: Our proof entails showing that, for appropriate
t, Ps~pn [regretp > t] <6 holds, so long as we can mean-
ingfully upper bound P x [sign o {f*(x)} # sign o {f(z)}]
with probability > (1 — ¢). Denoting the upper bound by B,
we characterise its form via a geometric argument. Roughly,
BuPx(Xa), where Xy is a specific region enclosing
the hyperbola, H(\, 7, ¢, ¢) in the (7(-,1),n)-plane. Then
setting ¢ as described, the result follows. A visual sim-
ulation of the underlying geometry can be found in Figure 1.

Theorem 3.5 tells us that the regret can be made to
decrease arbitrarily, provided a sufficient increase in the
number of training samples. The precise rate of decay,
depends on 1) the sample complexities associated with
learning the regression functions and 2) the rate at which the
probability measure , i.e., IP x, decays around the hyperbola
H(\, 7, ¢,©) (in the (7(-, 1), n)-plane) upon shrinking the
region of consideration around it (i.e., the region akin to the
"Projected X’ region in Figure I). Refer to section C of
supplement for a detailed proof and discussion.

Hyperbola: H(A,m, ¢, T)

10
—— 2 — square
® Projected Xoas
08
e Projected X
06
o
04
02 g =
00 T T T T
0.0 02 04 0.6 08 10

Figure 1. For any point x € x : corresponding projected coor-
dinates in the (7j(-,1),n)-plane, i.e., (j(x,1),n(z)) lie outside
of {projected X1 | J projected Xpaa}; we can be certain that
sign o {f*(x)} = sign o {f(x)} - the point centred within the
green square of length 2¢ is one such point.

4. Fairness under Differential Privacy

In this section, we work in a setting wherein there is
an additional requirement for our modelling pipeline to
mitigate information leakage about the sensitive attribute,
Y. To meet such a requirement we make use of a notion of
privacy known as differential privacy (Dwork et al., 2006),
which roughly speaking, ensures that an algorithm’s output
does not differ significantly on data sets that differ in only a
single instance.

Adult; €, = 1.0; ¥'=Race Adult; €, = 1.0; ¥ = Gender

— DP Plug-in 005 | — DPPlugein
— DP Post-Proc — DP Post-Proc

05 055 060 065 070 075 080 050 05 060 065 070 075
Balanced Accuracy Balanced Accuracy

Figure 2. The solid blue curve represents model performance in
the ’balanced accuracy-fairness violation plane’ corresponding
to our method, i.e., the DP Plug-in approach. Whereas the solid
red curve, corresponds to model performance for the DP Post-
Proc approach. The dotted curves represent the +0.2 standard-
deviations in fairness violations corresponding to each segment of
balanced accuracy considered. Privacy parameter €, = 1.0

Algorithm 2 DP Plugin approach to FAL, EO setting

Input: Sample S = {z;,y;,7,;}i=, from distribution IP; cost
parameters c, ; trade-off parameter \; privacy parameter €,

Estimate: mvia # =1Y" T{y; = 1}

Estimate: 7:y — [0, 1]nusing appropriate CPE on {z;, y; }7—1

Estimate: 775, (x,Y) — [0, 1] using appropriate CPE on S

Privatise: ﬁEO via appropriate privacy preserving protocol
. . Apriv

yielding, €,-DP protected 1z

Compute: 377" (1) = {1 — AR (2,1) — E)} A(z) — ¢

7

Return: f7"™ (z) = Hq (877" (z)) for any a € [0, 1]

We detail the DP Plugin protocol in Algorithm 2. We com-
pare DP Plug-in’s performance against that of the private,
fair, post-processing approach (DP Post-Proc) of (Jagielski
et al., 2019). We found that our method outperforms the DP
Post-Proc approach in three, out of four experimental set
ups considered. We present our evaluations on the Adult
data set (Dheeru & Taniskidou, 2017) in Figure 2. Complete
details for the DP Plug-in algorithm, and for our experimen-
tal set up and methodology, can be found in section D of the
supplement.

5. Conclusion and Future Work

Our main contributions in this paper included (1) prov-
ing the plug-in algorithm of (Menon & Williamson, 2018)
is consistent, (2) characterising the sample complexity of
learning fairness-aware BOCs via the plug-in algorithm, and
(3) proposing an easy to deploy, privacy-preserving protocol
for the plug-in algorithm. As future directions, we believe it
would be valuable to extend our analysis to the case where
the sensitive attribute in non-binary; the case where multiple
attributes are deemed sensitive. It would also be useful to
study the statistical properties of learning algorithms across
other settings, such as those demanding individual fairness,
model explainability, or intersections between such areas of
ethical and practical importance.
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