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Abstract
Training machine learning models with the ul-
timate goal of maximizing only the accuracy
could results in learning biases from data, making
the learned model discriminatory towards certain
groups. One approach to mitigate this problem
is to find a representation which is more likely
to yield fair outcomes using fair representation
learning. In this paper, we propose a new fair rep-
resentation leaning approach that leverages differ-
ent level of representation of data to tighten the
fairness bounds of the learned representation. Our
results show that stacking different auto encoders
and enforcing fairness at different latent spaces
result in an improvement of fairness compared to
other existing approaches.

1. Introduction
Representation learning has made a significant mark in the
field of Machine Learning (ML) over the past decade, with
the emergence of technologies that extract useful informa-
tion or features from data to improve the classification or
predictive performance of models, or even generate new syn-
thetic realistic data. Several applications for different kind
of tasks have emerged such as, machine translations ((Bal-
trušaitis et al., 2018)), anomalies detection ((Rivera et al.,
2020)), objects and actions recognition ((Papageorgiou &
Poggio, 2000)) etc.

ML models are widely used in real life to make decisions
that can affect people’s lives, e.g., loan applicant, college ad-
mission, criminal justice, hiring, etc. Models trained with bi-
ased data can lead to unfair decisions (Mehrabi et al., 2019).
In fact, these models mainly rely on human-generated data
to learn patterns that are then used to make predictions on
the new unseen data. However, real-world data are already
tainted by prejudices and unfair decisions (historical bias),
which reflect the flaws of our society. Historical bias is one

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

origin of algorithmic bias. Another source of algorithmic
bias is the representation bias (Mehrabi et al., 2019). It
arises when certain groups of the population are underrep-
resented within the data. For example, a facial recognition
model trained with data containing considerably more white
faces than black faces will tend to be less accurate when
used on black faces. To this end, the algorithmic bias occurs
when biases in the data are learned by the model and there-
fore lead to unfair decisions (Dwork et al., 2012; Kenfack
et al., 2021; Hardt et al., 2016).

One approach to mitigate the impact of biases from the
data is fair representation learning. With this technique,
the input data is mapped into a new representation, which
is enforced to satisfy a given fairness metric while main-
taining the utility of the representation as much as possible.
The learned representation can then be used for any down-
stream task such as classification or data generation, with
better chances of yielding fair results. Existing works by
Madras et al.; Edwards & Storkey used adversarial learning
to enforce the fairness of the representation with respect to
statistical parity. They use an auto encoder as a generator,
whose aim is to learn a latent space such that an adversary
cannot predict the sensitive feature (gender, race etc.) from
the learned latent representation. Madras et al. proposed a
learning objective for other fairness metrics such as equal-
ized odds and equal opportunity (section 3) with theoretical
bounds of fairness.

This work builds on top of the previous works, a fair rep-
resentation learning approach based on adversarial stacked
auto encoders, but leverages different level of representation
of the input data to tighten the fairness bounds of the learned
representation. In fact, the success of deep networks can be
attributed to their ability to exploit the unknown structure in
the input distribution to discover useful features at multiple
levels. In this multi-level representations, the higher-level
learned features are defined in terms of lower-level features
(Bengio et al., 2013). For instance, Khan & Fraz showed
that performing data augmentation in the feature space and
at different level of representation, can improve predictive
performances of the neural network. Similarly, a generative
model proposed by Huang et al. leveraged different level of
representation to improve the quality of generated images.
Applying fairness at a given level does not guarantee that
information about the sensitive attribute is removed, as it
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may not all be presented at the given level.

In essence, we hypothesize that the above arguments may
also be useful for improving fairness, which was confirmed
by our empirical results. Intuitively, the main idea is to
approach an optimal adversary via sequential learning, in
which one adversary is used to enforce fairness on a high-
level representation, which is then used as input for a lower-
level representation on which another adversary will be
trained to enforce fairness on that representation by improv-
ing the previous adversary.

The reminder of the paper is organized as follow. In Sec-
tions 2 and 3, we present background and related work
respectively. In Section 4, we introduce our fair representa-
tion learning approach that tighten the fairness bounds. In
Section 5, we present empirical results which show the ef-
fectiveness of our learned representation on several real-life
datasets. In Section 6, we conclude the paper.

2. Background
2.1. Fairness

Consider a training data D = {X,Y, S}, where xi ∈ Rn

is the feature vector, yi ∈ {0, 1} is the label, and S is the
binary protected attribute (e.g., gender, race, etc.). Learning
a fair representation means mapping the input data X into a
new representation X ′ such that X ′ will satisfy one of the
following fairness criteria:

• Statistical parity: It is also known as Demography par-
ity (∆DP ). This fairness criteria promotes the indepen-
dence between the predictor outcome (Ŷ a function of
X ′) and the sensitive attribute. Ŷ⊥ S, i.e., a predictor
satisfies statistical parity if P (Ŷ |S = 0) = P (Ŷ |S =
1) (Dwork et al., 2012). However when the sensitive
attribute correlates with the target variable, a drop in
accuracy can be observed.

• Equalized Odds: In contrast to ∆DP , Equalized Odds
(EO) promotes the conditional independence between
the prediction outcome and the sensitive attribute given
the class label (Ŷ⊥S|Y ). A predictor outcome Ŷ
trained with X ′ satisfies EO if P (Ŷ = y|S = 0, Y =
y) = P (Ŷ = y|S = 1, Y = y),∀y ∈ {0, 1}. In other
words the False Positive Rate (FPR) and the True Pos-
itive Rate (TPR) of groups should be the same. One
advantage of equalized odds is that it admits the per-
fect model Ŷ = Y (Hardt et al., 2016; Verma & Rubin,
2018).

• Equal opportunity: Similarly to EO, Equal opportu-
nity (EOpp) only considers the case where Y = 1
(Ŷ⊥S|Y = 1). A predictor outcome Ŷ satisfies EOpp
if P (Ŷ = 1|S = 0, Y = 1) = P (Ŷ = 1|S = 1, Y =

1). In other words, groups should have the same TPR.

It has been shown that predictor trained with fairness con-
strained are less accurate than the ones trained without it
(Kamishima et al., 2011). Thus fairness comes at the ex-
pense of accuracy. A desired property is to provide fair
representation with lower fairness accuracy trade-off.

2.2. Adversarial Learning

Inspired by the game theory, adversarial learning consist in
two neural networks (generator and discriminator) trained
in adversarial manner. The generator’s (G) goal is to fool
the discriminator by sampling as most realistic examples
as possible such the discriminator (D), which the goal is to
distinguish between generated examples and real examples,
will not be able to make to difference between examples
G(z) sampled from G using the random noise vector z and
real examples x. Thus, G and D play a minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)]

+ Ez∼pz
[1− log D(G(z))]

(1)

where D seek to maximize this quantity while G seek to
minimize it.

3. Related Work
Pre-processing techniques are used to mitigate biases from
the data by enforcing a given fairness property while main-
taining the utility of predictions. The objective of fair rep-
resentation learning is to learn a representation of the data
that is most likely to produce fair results for downstream
tasks. Work by (Zemel et al., 2013) is the first fair represen-
tation learning approach, which removes dependencies on
the sensitive attribute by mapping input data to new points
called prototypes. Prior work in this direction focuses on
statistical parity, equalized odds and equal opportunities.

The goal is to learn a representation that will remove all
the dependencies in regards to the sensitive attribute from
the training data, while retaining as much information as
possible. In (Louizos et al., 2016), the authors proposed
the Variational Fair auto encoder (VFAE), a variant of vari-
ational auto encoder that maps the input data into a latent
space while discarding as much information about the sensi-
tive attributes from the data as possible. Thus the sensitive
attributes are treated as nuisance variable. To do this, the
authors (i) used a factorized prior p(z)p(s) where z is the
latent representation and s is the sensitive attribute, (ii) and
added a regularization term to encourage the independence
between z and s using Maximum Mean Discrepancy.
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In (Edwards & Storkey, 2015), the authors proposed an ap-
proach to learn fair representation using adversarial learning
that achieves demographic parity. Beutel et al. explored
the particular fairness levels achieved by the algorithm from
(Edwards & Storkey, 2015) and showed how other fairness
metrics can be achieve by varying the distribution of the
adversary’s input. Madras et al. extended the previous work
by proposing adversarial objectives that yield fair and trans-
ferable representations that in turn admit fair classification
outcomes. They provided adversarial objective functions
for each fairness metric that upper bounds the unfairness of
arbitrary downstream classifiers in the limit of adversarial
training.

In this work, we propose a new fair representation learning
approach built upon previews works and it aims to improve
the fairness of models via stacked adversarial learning. We
enforce fairness at different level of representation in order
to tighten the fairness bounds of the final representation.

4. Methods
In this section, we describe our model’s architecture and
the training procedure we propose. Figure 1 presents an
overview of the architecture and the training process.

4.1. Model Architecture

Our main idea is to stack different Encoders (Ei), Decoders
(Di), classifier fi and adversary (hi), in order to get different
levels of representation of the input data. The intuition here
is that, different level of representation can exhibit different
details of information from the data. Enforcing fairness at a
given level doesn’t guarantee that fairness bounds are tight
enough, unless the adversary is an optimal, which which
may not be available in non-convex settings. Our goal is to
approach this optimal adversary in an incremental may.

At a each level i, we have different components: the learned
representation zi yielded by the encoder Ei, the correspond-
ing decoded representation z′i produced by the decoder Di,
the adversary network fi that enforces the fairness of that
representation and the predictor network hi that enforces the
utility of the representation. z0 represents the input data X ,
and z′0 the final reconstructed output (X ′). The overall loss
at each level i is defined as the linear combination of three
loss terms: the reconstruction loss (Lrec

Ei,Di
), the adversary

loss (Ladv
fi

) and the predictor loss (Ladv
hi

):

L(Gi, Di, fi, hi) = αLrec
Ei,Di

+ βLAdv
fi + γLClass

hi
(2)

Where α, β and γ are the weights associated with each
loss. Thus, Lrec

Ei,Di
is the loss of reconstructing the en-

coded representation zj by the decoder Di with use the
Root Mean Squared Error (RMSE): Lrec

Ei,Di
= 1
|X| ||z

′
i −

Ei(Di(zi−1))||22. The adversarial loss is to enforce the
representation to satisfy certain fairness constraint. For
instance, to satisfy statistical parity, the adversary loss is
defined as cross entropy loss:

Ladv
fi =

1

|X|
∑

s,ŝ∈S,Ŝ

s · log(ŝ+ (1− s) · log(1− ŝ)) (3)

The adversary network at the level i tries to minimize the
loss of predicting the sensitive attribute S from the encoded
representation zi, while the generator (typically auto en-
coder) tries to maximize it. The losses of predictor and
adversary can be defined as cross entropy loss or using loss
functions proposed in (Madras et al., 2018) to satisfy equal-
ized odds and equal opportunities. Thus at each level we
have the following minimax problem:

min
Gi,Di,hi

max
fi
L(Gi, Di, fi, hi) (4)

To have a different representation at each level, we vary the
dimension of each latent space, from higher to the lower
dimensions (|zi| > |zi+1|).

4.2. Model training

At given level i, we realize the classifier, auto encoders and
adversary as neural networks and alternate gradient decent
and ascent steps to optimize their parameters according to 4.
First the encoder-classifier-decoder takes a gradient step to
minimize L while the adversary fi is fixed, then fi takes a
step to maximize L with fixed auto encoder and classifier.
We use a relaxation of adversary objectives proposed by
(Madras et al., 2018) i.e to achieve Equalized Odds, in
addition to the latent space z, we passed the class label Y to
the adversary. To achieve Equalized odds the loss function
(Eq 4) is computed only using samples where Y = 0.

The training is performed sequentially, starting with an ini-
tial latent representation z1 trained using the input data.
During the first training, the adversary f1 enforces fairness
(typically ∆DP , ∆EO or ∆EOpp) of the lower level rep-
resentation z1. Afterwards a new latent space of lower
dimension z2 (higher level representation) is stacked, and
uses the pre-trained representation z1 as input.

The number of stacked layers on which the fairness con-
straints are imposed depends on the depth of the neural
network and are specified as a hyper parameter. In the exper-
iments, we used a Multi Layer Perceptron (MLP) network
for the encoder and decoder, with one hidden layer. Initially,
fairness is applied on the hidden layer (z1), then the output
layer (latent space) is stacked and used as the final represen-
tation (z2). In the testing phase, we get rid of all decoders,
adversaries, and classifiers. Only the encoders are used to
map the input data into the fair space.
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Figure 1. Adversarial Stacked Auto-Encoder architecture

5. Experiments
We present experiments on two standard real world datasets
widely used for fair classification as suitable benchmarks
to compare the performance of different machine learning
methods:

The Adult Income dataset (Asuncion & Newman, 2007) has
48843 instances of demographic information of American
adults, described with 14 features. The target variable in-
dicates whether individual’s income is larger than 50K US
dollars.

The German credit dataset (Jeff et al.) has 1000 instances of
bank account information represented by 20 features with
the aim to classify bank account holders into credit class
good or bad. For both datasets, we use gender as the single
protected attribute. We demonstrate the effectiveness of our
approach compared to standard fair representation learning
techniques.

5.1. Fair classification

Figure 2 shows the fairness results of the MLP trained with
the representation obtained by our approach compared to
the representation produced by the vanilla approach (LAFR)
and MLP trained with original input data (MLP-unfair). For
the vanilla approach, we used a network architecture with
one hidden layer of 20 units, and latent space of 8 units for
Adult dataset, 15 hidden units and 8 output units for the
German dataset. We trained the same architecture using
our approach with two level of representations. ie. we
trained an adversary on the hidden layer and then stacked
the output layer and trained another adversary on it. We
used single-hidden-layer neural networks for each of our
classifier and adversary with 20 hidden units. The equation
4 is optimized using Adam optimizer (Kingma & Ba, 2014)
with learning rate of 0.01, a batch size of 64, trained for 150
epochs for Adult dataset and 1000 for the German credit.
We run the experiment seven times with different values of
β (1, 2, 3, 5, 15), with α = 0 and γ = 1.

Similar to the process used by Madras et al., we cre-
ated a feed-forward model which consisted of our frozen,
adversarially-learned encoders followed by an MLP with
one hidden layer, with a loss function of cross entropy with
no fairness modifications. We reported the mean over all
runs per β and we use a validation procedure to evaluate.
The results shows that representation produced by our model
always lower bound fairness of standard approaches. This
shows that our approach provides tighter fairness bounds.
However, since the main objective of our work is to better
improve fairness, a decrease in accuracy is observed com-
pared to the standard approach, which we attribute to the
trade-off between fairness and accuracy.

5.2. Classification on downstream tasks

Table 1. Comparison of ∆DP on classification tasks using logistic
regression and random forest model on Adult and German datasets

MODEL UNFAIR LAFR OURS

ADULT
LOGISTIC REGRESSION 0.53± 0.008 0.51± 0.009 0.21± 0.004
RANDOM FOREST 0.54± 0.001 0.49± 0.001 0.25± 0.007

GERMAN
LOGISTIC REGRESSION 0.36± 0.08 0.31± 0.09 0.08± 0.04
RANDOM FOREST 0.27± 0.03 0.23± 0.06 0.11± 0.05

Learning fair representation is a model-agnostic approach
to mitigating unfairness i.e. the learned representation can
be used for any downstream task and not only for neural
network based models. We tested linear and non linear mod-
els on representation produced by our model and standard
approach. We trained the representation using the network
architecture described in previous section, without hyper-
parameter tuning and using α = 0, β = 1, γ = 1. We
also trained models on the original dataset without fairness
constraints.

Table 1 shows ∆DP reported from 5-fold cross validations
on Adult and German datasets. Results shows that represen-
tation produced by our model also provides better fairness
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Figure 2. Accuracy and fairness trade-off on fair classification of the German (first row) and Adult (second rows) datasets. Our learned
representation always lower bound the fairness results of the representation learned by vanilla approach. Which shows fairness bounds of
our approach is more tight. However we can observe a drop in accuracy compared to other representation.

performances when trained using classical machine leaning
algorithms such as Linear Regression and Random Forest.
We observed similar results for other fairness metrics (EO,
EOpp).

6. Conclusion
In this paper, we showed that applying fairness at different
levels of representation improves the fairness performance
of the learned representation. In this regard, we proposed
an adversarial stacked auto encoder architecture which ex-
pose different level of representation of the input data, on
which several adversary networks are trained sequentially
to tighten the fairness bounds of the final representation
(lowest level representation).

Our empirical results show that this approach outperform
standard adversarial fair representation learning approach
in terms of fairness. Intuitively, our learning process lead
to learning an optimal adversary in incremental way. How-
ever, stabilizing adversarial training of fair representations
remains an important issue that we plan to address in future
work.
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