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Abstract

In social domains, Machine Learning algorithms
often prompt individuals to strategically modify
their observable attributes to receive more favor-
able predictions. As a result, the distribution the
predictive model is trained on may differ from
the one it operates on in deployment. While such
distribution shifts, in general, hinder accurate pre-
dictions, our work identifies a unique opportunity
associated with shifts due to strategic responses:
We show that we can use strategic responses effec-
tively to recover causal relationships between the
observable features and outcomes we wish to pre-
dict. More specifically, we study a game-theoretic
model in which a principal deploys a sequence
of models to predict an outcome of interest (e.g.,
college GPA) for a sequence of 7 strategic agents
(e.g., college applicants). In response, strategic
agents invest efforts and modify their features for
better predictions. In such settings, unobserved
confounding variables (e.g., family educational
background) can influence both an agent’s ob-
servable features (e.g., high school records) and
outcomes (e.g., college GPA). Therefore, standard
regression methods (such as OLS) generally pro-
duce biased estimators. In order to address this
issue, our work establishes a novel connection
between strategic responses to machine learning
models and instrumental variable (IV) regression,
by observing that the sequence of deployed mod-
els can be viewed as an instrument that affects
agents’ observable features but does not directly
influence their outcomes. Therefore, two-stage
least squares (2SLS) regression can recover the
causal relationships between observable features
and outcomes.
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1. Introduction

Machine learning (ML) predictions increasingly inform
high-stakes decisions for people in areas such as college ad-
missions (15, 23), credit scoring (17, 19), employment (20),
and beyond. One of the major criticisms against the use
of ML in socially consequential domains is the failure of
these technologies to identify causal relationships among
relevant attributes and the outcome of interest (9). The
single-minded focus of ML on predictive accuracy has given
rise to brittle predictive models that learn to rely on spuri-
ous correlations—and at times, and harmful stereotypes—
to achieve seemingly accurate predictions on held-out test
data (24, 8). The resulting models frequently underper-
form in deployment, and their predictions can negatively
impact decision subjects through several distinct pathways.
As an example, ML-based decision-making systems often
prompt individuals to modify their observable attributes
strategically to receive more favorable predictions—and
subsequently, decisions (13). (These strategic responses are
among the primary causes of distribution shifts leading to
the unsatisfactory performance of ML in social domains.)
Moreover, recent work has established the potential of these
tools to amplify existing social disparities by incentiviz-
ing different effort investments across distinct groups of
subjects (10, 6, 14).

These issues have led to renewed calls on the ML com-
munity to strengthen the bond between ML and causal-
ity (16, 21). Knowledge of causal relationships among pre-
dictive attributes and outcomes of interest promotes several
desirable aims: First, ML practitioners can use this knowl-
edge to debug their models and ensure robustness even if
the underlying population shifts over time. Second, poli-
cymakers can utilize the causal understanding of a domain
in their policy choices and examine a decision-making sys-
tem’s compliance with their goals and values (e.g., they can
audit the system for unfairness against particular popula-
tions (11).) Finally, predictions rooted in causal associations
block pathways of gaming and manipulation and, instead,
encourage decision subjects to make meaningful interven-
tions that improve their actual outcomes (as opposed to their
assessments alone).

Our work responds to the above calls by offering a new
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approach to recover causal relationships between observ-
able features and the outcome of interest under strategic
responses—without substantially hampering predictive ac-
curacy. We consider settings where a decision-maker de-
ploys a sequence of models to predict the outcome for a se-
quence of strategic decision subjects. Often in such settings,
there are unobserved confounding variables that influence
subjects’ attributes and outcomes simultaneously. Our key
observation is that we can correct for the effect of such
confounders by viewing the sequence of assessment rules
as valid instruments which affect subjects’ observable fea-
tures but do not directly influence their outcomes. Our main
contribution is a general framework that recovers the causal
relationships between observed attributes and the outcome
of interest by treating assessment rules as instruments.

1.1. Our setting

Consider a stylized setting in which a university decides
whether to admit or reject applicants on a rolling basis (for
example, (18)) based (in part) on how well they are predicted
to perform if admitted to the university (See Figure 1). We
model such interactions as a game between a principal (here,
the university) and a population of agents (here, university
applicants) who arrive sequentially over 7" rounds, indexed
byt =1,2,---,T. In each round ¢, the principal deploys
an assessment rule 8; € R™, which is used to assign agent
t a predicted outcome y; € R. In our running example, §
could correspond to the applicant’s predicted college GPA
if admitted. The predicted outcome is calculated based on
certain observable/measured attributes of the agent, denoted
by x; € R™. For example, in case of a university applicant,
these attributes may include the applicants’ standardized test
scores, high school math GPA, science GPA, humanities
GPA, and their extracurricular activities. For simplicity, we
assume all assessment rules are linear, that is, §; = xtT 0,
for all ¢.

Measured vs. latent variables. We assume that the agent
best-responds to the assessment rule 6, by strategically mod-
ifying their observable attributes x; to receive a favorable
predicted outcome. Often agents cannot modify the value of
their measured attributes (e.g., SAT score) directly, but only
through investing effort in certain activities that are difficult
to measure. For example, a student might take standardized
test preparation courses to improve their SAT scores, or they
may spend time studying the respective subjects to improve
their math and humanities GPA.

Latent variable: effort investments. We formalize the
above with a vector a; € R¢, which denotes the unobserv-
able efforts agent t invests in d activities in response to
the assessment rule 6;. We assume there exists a matrix
W which maps effort vectors to changes in observable at-
tributes. The (k, 7)-th entry of this effort conversion matrix

defines the change in the k-th observable attribute x; j, for a
one unit increase in the jth coordinate of the effort vector
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Figure 1: Graphical model for our setting (top) along with
the way it corresponds to the admissions running example
(bottom). Grey nodes are observed, white unobserved. Ob-
servable features x; (e.g. high school GPA, SAT scores,
etc.) depend on both the agent’s private type u; (e.g. a stu-
dent’s background —whether they have family who went to
college, their gender, race, ethnicity, socioeconomic status,
etc.) via initial features z; (e.g. the SAT score or HS GPA
student ¢ would get without studying) and effort conversion
matrix W; (e.g. how much studying translates to an increase
in SAT score for student ¢) and assessment rule 6; via action
a, which could correspond to studying, taking an SAT prep
course, etc). An agent’s outcome y; (e.g. college GPA) is
determined by their observable features x; (via causal rela-
tionship 8) and type u; (via baseline outcome error term g,
which could be lower for students from underserved groups
due to institutional barriers, discrimination, etc).

Latent variables: agent types. Each agent ¢ has an unob-
served private type u; that can impact both their observed
attributes x; and true outcomes ;. (The type is the con-
founder we would like to correct for.) In our running ex-
ample, the type may broadly refer to the student’s relevant
background factors that cannot be directly observed or mea-
sured. For example, the student’s background can specify
the socioeconomic background of the student (including
whether they are the first generation in their family to go to
college), as well as their innate talent and abilities.

Importantly, we assume the type u; has nested in it several
relevant latent characteristics of the agent, which we refer
to using the tuple (z;, Wy, g¢):

» Vector z; € R™ specifies agent t’s baseline measure-
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ment values. For example, it can specify the baseline
values of high school grades and SAT score the student
would have received without any effort spent studying
or preparing for standardized tests.

e Matrix W; specifies agent t’s effort conversion ma-
trix—that is, how various effort investments translate
to changes in observable features.

¢ g, summarized all other environmental factors that can
impact the agent’s true outcome when we control for
observable attributes. For example, it may reflect the
effect of the institutional barriers the student faces on
their actual college GPA.

We assume agent t’s observable features take the form x; =
Z: + Wtat.

Agent best responses. We assume the agent selects their
effort profile a; in order to maximize their predicted out-
come ¢, subject to some effort cost ¢(-) associated with
modifying their observable attributes. In particular, we as-
sume the cost function is quadratic, that c(a;) = §||a|3.
This is a common assumption in the strategic classification
literature (e.g., (22, 12, 3)). The agents select their effort a;
by solving the following optimization problem:

" 1 2
a; = argmax < 9+ — —||a/l3
a 2

Given any deployed assessment rule 6;, the agent’s best-
response effort is a; = WtTBt.

True outcome model. After each round, the principal gets
to observe the agent’s true outcome y; € R, which takes the
form

Y = xtT 0" + g:.

Here 0™ is the true relationship between an agent’s observ-
able features and outcome. (Recall that g; € R captures
the dependence of agent ¢’s outcome y,; on unobservable
or unmeasured factors.) Note that since z;, W;, and g,
may be correlated with one another, ordinary least squares
generally will not produce consistent estimator for 8 (see
Appendix A.1 for more details).

1.2. Overview of results

We provide a general method to infer the causal relation-
ship parameter *. We make the novel observation that
the principal’s assessment rule 8, is a valid instrument, and
leverage this observation to recover 8" via two-stage least
squares regression (2SLS). Our method applies to both off-
policy and on-policy settings: one can directly apply 2SLS
on historical data {(6;,x;, y:)}L_;, or the principal can in-
tentionally deploy a sequence of varying assessment rules
(e.g., by making small perturbations on a fixed rule) and
then apply 2SLS on the collected data.

2. IV regression in the strategic learning
setting

Instrumental variable (IV) regression allows for consistent
estimation of the relationship between an outcome and ob-
servable features in the presence of confounding terms. We
focus on two-stage least-squares regression (2SLS), a kind
of IV estimator. 2SLS independently estimates the relation-
ship between an instrumental variable 8, and the observable
features x;, as well as the relationship between 6, and the
outcome y; via simple least squares regression. In this set-
ting, we view the assessment rules {6}7_; as algorithmic
instruments and perform IV regression to estimate the true
causal parameter 6. There are two criteria for 6, to be a
valid instrument: (1) 8; influences the observable features
x¢, and (2) 0 is independent from the private type u;. By
design, criterion (1) is satisfied. We aim to design a mecha-
nism that satisfies criterion (2) by choosing assessment rule
6, randomly, independent of the private type u;. As can be
seen by Figure 1, the principal’s assessment rule 8, satisfies
these criteria.

Formally, given a set of observations {6, x;, y; }i_;, we

compute the estimate 6 of the true casual parameters 8 from
the following process of two-stage least squares regression

(2SLS). We use 8; to denote the vector [0, 1] T

1. Estimate Q = E[WtWtT], ]E[th] using {S_} =
(S2,08,) S, o0d

a Q0*, (Elg] + E[z{]0*) using
arre| = (200 L B

2. Estimate A =

3. Estimate 8 as @ = SATIS\,

We assume that 23:1 étéj is invertible, as is standard in
the 2SLS literature. For proof that IV regression produces a
consistent estimator of 8™, see Appendix A.3.

Theorem 2.1. Given a sequence of bounded assessment
rules {Ot}thl and the (observable feature, outcome) pairs
{(x¢,y:) Y], they induce, the distance between the true

causal parameters 0™ and the estimate 0 obtained via IV
regression is bounded as

VT
omin (L1, 040 ~2)7)

16 —0[2= 0

with high probability, if g, is a bounded random variable.

Proof Sketch. See Appendix B.1 for the full proof. The
bound follows by substituting our expressions for x;, y; into
the IV regression estimator, applying the Cauchy-Schwarz
inequality to split the bound into two terms (one dependent
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on {(6;,x;)}L_, and one dependent on {(8;, g;)}L_,), and
using a Chernoff bound to bound the term dependent on
{(04, g¢)}1_, with high probability.

While in some settings, the principal may only have access
to observational data, in other settings, the principal may be
able to actively deploy assessment rules on the agent popu-
lation. We show that in scenarios in which this is possible,
the principal can play random assessment rules centered
around some “reasonable” assessment rule to achieve an

1 . . .
@) (—Ug T ) error bound on the estimated causal relationship

5, where 03 is the variance in each coordinate of 6,. Note
that while playing random assessment rules may be seen
as unfair in some settings, the principal is free to set the
variance parameter o3 to an “acceptable” amount for the
domain they are working in. We formalize this notion in the
following corollary.

Corollary 2.2. Ifeach 6, ;, j € 1,...,m, is drawn inde-
pendently from some distribution P; with variance 03, 7t
and Wy are bounded random variables, W, WtT is full-rank,
and o i (E[W,W,"]) > 0, then, with high probability,

~ . 1

16 —6"|l2=O (M) -
Proof  Sketch. We
Omin (ZZ;I Gt(xt—i)T) into two terms, |42
and opin(B), where A and B are functions of
Z;F:l 0:(x¢ — Z)T. We use the Chernoff and matrix
Chernoff inequality to bound || Al|2 and ¢, (B) with high

probability respectively. For the full proof, see Appendix
B.3.

begin by breaking up

3. Experiments

We experimentally validate our methods on a semi-synthetic
dataset based on real university admissions data. See Ap-
pendix C for the full description.

Results. In Figure 2a, we compare the true effect of SAT
on college GPA (6*) with the estimate of this quantity given
by our method of 2SLS from Section 2 (925L5) and with the
estimate given by OLS (90L5). In Figure 2b, we compare the
estimation errors of OLS and 2SLS, i.e. ||[@oLs — 6|2 and
H§25Ls — 0%||2. We find that our 2SLS method converges to
the true effect parameters (at a rate of about %), whereas
OLS has a constant bias. Although our setting assumes
that SAT score has no causal effect on college GPA, OLS
mistakenly predicts that, on average, a 100 point increase in
SAT score leads to about a 0.1 point increase in college GPA.
If SAT were not causally related to college performance in
real life, these biased estimates could lead universities to
erroneously use SAT scores in admissions decisions. This
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(a) True effect of SAT on college GPA vs. OLS and 2SLS.
OLS versus 2SLS estimates for SAT effect on college GPA
over 5000 rounds.

|
e
=

Estimated college GPA change
per 100 point SAT score increase
o
=

|
o
[N}

5000

§ 0.25

o

(0]

£ 0.201

£

® 0.15 1 -== 1/sqrt(T)
9 1 OLS
£ 0.10 —— 2SLS
W \

€ 0.05

e -~

o~

24 0.00

1000 2000 3000 4000 5000

Number of applicants (rounds)

(b) Effect estimate error H/G\ — 0|2 for OLS and 2SLS. OLS
effect estimate error ||@oLs — 0||2 (in orange) and 2SLS
estimate error ||@s.s — 0|2 (in blue) over 5000 rounds.

Figure 2: Evaluation of strategic IV regression on our semi-
synthetic university admissions data. Results are averaged
over 10 runs, with the error bars (in lighter colors) repre-
senting one standard deviation.

highlights the advantage of our method since it recovers
causal relationships to avoid using arbitrary assessments,
especially in the presence of confounding.

4. Conclusion

We established the possibility of recovering the causal rela-
tionship between observable attributes and the outcome of
interest in settings where a decision-maker utilizes a series
of linear assessment rules to evaluate strategic individuals.
Our key observation was that in such settings, assessment
rules serve as valid instruments. (Since they causally impact
observable attributes but don’t directly cause changes in the
outcome.) This observation enables us to present a 2SLS
method to correct for confounding bias in causal estimates.
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//www.sciencedirect.com/science/ The least-squares estimate of 8* is given as
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T
/O\LS = (Z xtxtT> thyt.
t=1 t=1

However, 0 5 is not a consistent estimator of 8*. To see
this, let us plug in our expression for y; into our expression
for 05. We get

T -L o
OLS: (ZX,Q{I) th(xtTO*Jrgt)
t=1 t=1

After distributing terms and simplifying, we get

R T -l
0LS = 0* =+ (thx;r> thgt~
t=1

t=1

x; and g; are not independent due to their shared de-
pendence on the agelznt’s private type u;. Because of
this, (23:1 xtxtT> 23:1 x;gs will generally not equal
0,,, even as the number of data points (agents) grows
large. To see this, recall that x; = z; + W;a;, so
D1 Xegr = Zle(zt + W W,"8,)g;. g and z; are both
determined by the agent’s private type. Take the example
where z; = [g;,0,...,0]". In this setting, Z;‘ll Z1G; =
[¢2,0,...,0] ", which will always be greater than 0 unless
gt — 0, Vt.

A.2. 2SLS derivations

Define 5t = [9115] X; can now be written as x; =
0
[WtWtT Zt} |: 1t:| .
-
Lemma A.1. Using OLS, we can estimate {E%V[Zt??t q as
t

a T “tr T -1 T T
|:7T:| - (Z Otet ) Zetx: - < Otai ) |:Zt,:Tl t)‘T—t :| ’
z t=1 t=1 1 E

p t=1%t
~ ~1
where Q) = (ZZ;I BtOI) ZZ;I 0:(x; —7)".

Proof. In order to calculate ﬁ, we will make use of the
following fact:

Fact A.2 (Block Matrix Inversion ((2))). If a matrix P is
partitioned into four blocks, it can be inverted blockwise as
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follows:
A B]7' [A'+A'BE'CA'! —A'BE!
P=lc p| = —E'CA! E!

where A and D are square matrices of arbitrary size, and
B and C are conformable for partitioning. Furthermore, A
and the Schur complement of Ain P(E = D — CA™'B)
must be invertible.

LetA=3Y,,00/,B=],6,C=%],0], and
D= Zle 1 =T. Note that A is invertible by assumption

and F is a scalar, so is trivially invertible unless CA™'B =
T.

Using this formulation, observe that

T T
z' =—E'CAT' Y ox, + B> x/

t=1 t=1

and
N T T
Q=AY "60x; + AT'BETICAT Y 0ix{
t=1 t=1

T
—~AT'BET'Y x{

t=1

Rearranging terms, we see that X can be written as
N T
Q=A4"">"0x/ — A 'Bz"
t=1
Finally, plugging in for A and B, we see that
N T
Q= (Z 0.6, )
t=1
T -1
= (Z OthT) Z Ht(xt — E)T
t=1 t=1

,IT

T -1
> e - (Z 9t03> > 62"
t=1 t=1

t=1

O

Similarly, we can write y; as y; = [gT 1] W, o
Y, Yt Yt t g + z;re* .
Lemma AJ3. Using OLS, we can estimate

{ E[W: W, 0 }as
Elg:] + E[z/ 0"

3 T “tr
_ T x| — Zet9t> Z(hyt
2ol () &
T -1
- (oal) [ fu].
—1 Dt Y

~ —1
where A = (23:1 OtH;r) Zthl 0:(y: —g—2z'6%).

Proof. The proof follows similarly to the proof of the pre-
vious lemma. Let A = Zthl 0.0, B = Zle 6.,
C = 23:1 9:, and D = 23:11 = T. Note that A is
invertible by assumption and E is a scalar, so is trivially
invertible unless CA~1B = T.

Using this formulation, observe that
T T
g +2 0 =-ETCAT'> 0+ ETND w
t=1 t=1
and

T T T
A=A "6+ A'B (Echl > 0wy —E Zyt>
t=1 t=1

t=1

T
=AY 0w —-A'B (gT + 270*)
t=1

T -1 7
_ <Z atetT) S (y-g —2"0)
=1 =1

Theorem A.4. We can estimate 0™ as

b-aa- (Z .(x — Z)T)

71T

Zet(yt ~g—2'0%
t=1

Proof. This follows immediately from the previous two
lemmas. O

A.3. 2SLS is consistent
Consider the two-stage least squares (2SLS) estimate of 6%,

51‘/ = (Z Ht(xt — Z)T>

_1T

Zé’t(yt —g—2'0%
t=1
Plugging in for y; and simplifying, we get

Orv =6" + (Zet(xt - Z)T> Zet(gt -9)

t=1

To see that 0y is a consistent estimator of 0%, we show
that limp_, o EHOIV — 0*||§: 0.

2
-1 7

> 6:(9:—9)

E|61v - 67[3=E

(Z 0:(x¢ — z)T>

2

g+ — g and 0, are uncorrelated, so Zthl 0:(g9:—g) will go to
zero as T' — oo. On the other hand, Zthl 0:(x;—z)" will
approach TE[0;(x; — Z)"]. 8; and x; — Z are correlated,
so E[0;(x; —Z) "] # 0 in general.
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B. Causal parameter recovery derivations

B.1. Proof of Theorem 2.1

~ -1
Recall that @ = (Z;Tzl Ht (Xt — 2)T) Z,trzl Ht (yt —g—
z'6*) from Appendix A.2. Plugging this into || — 6%/,

we get
T -1
= <Z Ot(xt Z)T>
2 t=1
T
<Z 0.(y. —g— zTe*)> -0
t=1
Next, we substitute in our expression for y; and simplify,

obtaining
<Zef(xt —Z)T> <Zot(gf _g)>

<Z Gt(xt - Z)T>

_ =Rt -a)l,
" Omin (ZL 9, (x: — z)T)

2

16— 672

2

IN

2

We now bound the numerator and denominator separately
with high probability.

B.2. Bound on numerator

T

Z (9: — )

> 0:(9: — Elg:] + Elge] — 9)

t=1

T
Z 0:(g9: — E[g:])
t=1

2 2

2

B.2.1. BOUND ON FIRST TERM

. o\ 1/2
= (Z (Z 01,5 (ge — E[QtD) )

Since (g: — E[g¢]) is a zero- mean bounded random vari-
able with variance parameter a , the product 6, ;(g; —
E[g;]) will also be a zero- mean bounded random vari-
able with variance at most 3%¢7. In order to bound

o\ 1/2
(Z;n_1 (Zthl 0: (g9t — E[gt])) > with high probabil-
ity, we make use of the following lemma. Note that bounded
random variables are sub-Gaussian random variables.

> 0i(g — Elgi])

+[3 k100 )

Lemma B.1 (High probability bound on the sum of
unbounded sub-Gaussian random variables). Let x; ~
subG(0,02). For any § € (0,1), with probability at least
1-4,

< 04/2T1og(1/6)

T
>
t=1

Lemma B.1 to
1/2
, we get

Applying
(S (Z2sta - Bla))

\j Z (Z 01,5 (ge — E[m]))

(by a union bound, where 0; = §/m for all 5)
< Bogy/2T'mlog(m/é)

IN

> (s 2T TRl1T5)

< Zﬁ2 22T log(m/9)

with probability at least 1 — 4.

B.2.2. BOUND ON SECOND TERM

T

Z E[g:] — 9)

2

I
~/
\MS
oY
IMH
>

&
N~
B
&
)
|
2
~
(V)
N——
—
~
(V)

j=1 \t=1 s=1
m T T 2\ 1/2
1
: < (Z (St o) )
Jj=1 t=1 s=1

After applying Lemma B.1, we get

A

> 0Bl -3

. o\ 1/2
< (Z (Zwt,j}og\/zﬂoguwn) )

m 1/2
< (Z (Bo,v/2T log(l/éj))2>

J:L 1/2
< (Z [32032T log(m/é))

< Bogy/2T'mlog(m/6)

with probability at least 1 — §
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B.3. Proof of Corollary 2.2

Next let’s bound the denominator. By plugging in the ex-
pression for x;, we see that

T
Omin <Z et(Xt - Z)T> = Omin (A + B) s
t=1

where A = Y| .60z — 27 and B =
S 1, 6,0, W,W,. By definition,

Omin(A+ B) = min lH(AJrB)aHQ.

allall2=

Via the triangle inequality,

GuinlA+B) = _min_(|Balla—|Aa]2)
a,l|lall2=
> min_||Bala—|Al:
a,flall2=1

> omin(B) — [|Al2

B.3.1. BOUNDING || A||2

IA]l2 = Efo.] + Efz] — 2)"

2
T

Z (E[z¢] — 2)

i

2

Bound on first term

1
N

2 F

<

T
Z 9t(Zt -
t=1 2

- o\ 1/2
(Z , <Zem(%,j —E[Zt,j})> )

Notice that 6; ;(z; ; — E[2¢ ;]) is a zero-mean bounded ran-

dom variable with variance at most 3%02. Applying Lemma
B.1, we can see that

T
>_0i(z -
t=1

i=1 j=1

1/2
/5)>

< (m262052Tlog(m2/5))1/2
< mpBo.+/2T log(m?/4)

< <i i B2 22T log(m?

i=1 j=1

I o< <i§mj (ﬂaz\/leog(l/éi,j))Q)

with probability at least 1 — 4.
Bound on second term

—Z

Il
i+
5°
M'ﬂ
E
5

g)N

2 2

A A
M: M-
[va)

M: <=

M
SO
< N
Si- T
VI
s <
v

K)1\2

~

IA
NE
NE

VN

M=
5
N -

< <Z > BT log(mz/(;))
i=1j=1
< mpBo,+/2T log(m?/4)

B.3.2. BOUNDING 0 pin(B)

Next we bound 0y, (B) = Umm(ZtT:l HtBtTWtWtT).
We can write W, W, as E[W,W,"] + ¢;. Note that since

each element of W; is bounded, each element of ¢, €
R™>™ will be bounded as well. Using this formulation,

O'mzn = Omin <Zo Ot WtWt } + Et))
= Omin (Za et WtWt + ZOth €t >
t=1
T
Zeﬁz—et
t=1

> Oumin (Z 0.0, E[W,W,'] ) -
T
> Omin (Z GtQZE[WtWtTO — Zetez—Gt
=1 =1

We proceed by bounding each term separately.

2

F

172 Bound on first term

T T
Omin <Z 0t0;r]E[WtWtT}> Z Umin(]E[WtWtT])Umin(Z Gteg—)

t=1

Let ¢ = Opmin(E[W:W,"]). We assume that W; is dis-
tributed such that ¢ > 0. Therefore,

T T
Tmin (Z 0.0, E[V{@WJ]) > comin(D_ 0:0/).

t=1 t=1
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Next, we use the matrix Chernoff bound to bound
Amin(X1—, 0:8,) with high probability.

Theorem B.2 (Matrix Chernoff). Consider a finite se-
quence {X}L | of independent, random, Hermitian ma-
trices with common dimension d. Assume that

0 < Anin(Xt) and Apas(Xy) < L for each index t

Introduce the random matrix

T

Y:ZXt.

t=1

Define the minimum eigenvalue i, Of the expectation
E[Y]:

T
Then,

o= Homin /L
) < — ) < —_—
PAmin(Y) < (1 = €)pmin) < d <(1 — 6)1_€>

foree0,1).

LetY = 23:1 6,6, . In our setting,

T
t=1
= TAmin (agllmm + E[Bt}E[BtTD

02T, xm and E[6,]E[0, ] commute, so

=T Amin (Ugﬂmxm)
=To}

Amaz(etaz—) = pm,
so let L = fm.

Picking € = 1/2 and applying the matrix Chernoff bound to
Amin (Zthl 9t9tT), we obtain

To2

1\ 2m
Amin Zetat < TO'@ < d (56)

By rearranging terms, we see that if 7' >
then

2B8m d
O'g log %e IOg 5

T
1
t=1

with probability at least 1 — 4.
Bound on second term

i=1 =1 \t=1

T
Bt €t

Since each ¢; ; ; is a bounded zero-mean random variable,
0:,40¢ j€r s 5 is also a bounded zero-mean random variable,

with variance at most 3%, We can now apply Lemma B.1:

A

m m 5 1/2
< (ZZ (80w /2T og(1/5:,)) )

1/2
/5))

1/2

T
Z 9,50:@
t=1

IN

<Z > Blof2T log(m

=1 j=1
< (m2540€V2T10g(m2/5))

< mB2ow+/2T log(m?/6)

with probability at least 1 — 4.

Putting everything together
Putting everything together, we have that

16 —67|2<
2B04+/2mlog(m/§)

LeVTo? — mpB2ow/2log(m?/8) — 2mBo./2log(m?/5)

with probability at least 1 — 6.

C. Omitted experiments

In this section, we present additional details for our experi-
ments in Section 3. At the end, we provide more information
regarding the dataset and computation resources used.

C.1. University admissions full experimental
description

We construct a semi-synthetic dataset based on an example
of university admissions with disadvantaged and advan-
taged students from Hu et al. (7). From a real dataset of
the high school (HS) GPA, SAT score, and college GPA
of 1000 college students, we estimate the causal effect of
observed features [SAT, HS GPA] on college GPA to be
0" = [0.00085,0.49262] " using OLS (which is assumed
to be consistent, since we have yet to modify the data to
include confounding). We then use this dataset to construct
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Figure 3: Distributions of unobserved features z (in lighter
colors), i.e. initial HS GPA (two left figures) and SAT (two
right figures), and observed features x (darker colors) for
disadvantaged (two top figures in yellow and orange) and
advantaged students (two bottom figures in green).

synthetic data which looks similar, yet incorporates con-
founding factors. For simplicity, we let the true causal effect
parameters % = [0,0.5] . That is, we assume there is a
significant causal relationship between college performance
and HS GPA, but not SAT score.! We consider two types
of student backgrounds, those from a disadvantaged group
and those from an advantaged group. We assume disad-
vantaged applicants have, on average, lower HS GPA and
SAT z;, lower baseline college GPA ¢;, and require more
effort to improve observable features (reflected in 1,): this
could be due to disadvantaged groups being systemically
underserved, marginalized, or abjectly discriminated against
(and the converse for advantaged groups). Initial features
z; are constructed as such: For any disadvantaged applicant
t, their initial SAT features 23T ~ A/(800,200) and initial
HS GPA zS6PA ~ N/(1.8,0.5). For any advantaged appli-
cant t, 22T ~ A(1000,200) and 215 SPA ~ N(2.2,0.5).
We truncate SAT scores between 400 to 1600 and HS GPA
between 0 to 4. For any applicant ¢, we randomly deploy as-
sessment rule 8, = [05AT 9HS CPAIT where 934T ~ N(1,1)
and OIS CPA  Af(7.5,56.25). 6, need not be zero-mean,
so universities can play a reasonable assessment rule with
slight perturbations while still being able to perform un-
biased causal estimation. Components of the average ef-
fort conversion matrix E[W;] are smaller for disadvantaged
applicants, which makes their mean improvement worse
(see Figure 3). We set the expected effort conversion term

"Though this assumption may be contentious, it is based on
existing research (1).

I combined
disadvantaged
B advantaged

—==- combined mean
disadvantaged mean
—=- advantaged mean

400 - f !

9 350+
300 1
250 1
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Number of applican
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Figure 4: Outcome distributions for semi-synthetic datasets:
college GPA for university admissions data. Distribution
of college GPAs (outcomes y) for disadvantaged students
(orange), advantaged students (green), and both combined
(blue).

5 0.05
0.1 04
sponds to effort expended to change a specific feature. For
example, entries in the first row of E[WW;] correspond to
effort expended to change one’s SAT score. For each appli-
cant ¢, we perturb E[W;W," ] with random noise to produce
W, W,". We add noise to E[W;W,] to produce W;W,"
for advantaged applicants and subtract for disadvantaged
applicants: thus, it takes more effort, on average, for mem-
bers of disadvantaged groups to improve their HS GPA and
SAT scores than members of advantaged groups. Finally,
we construct college GPA (true outcome y,) by multiply-
ing observed features x; by the true effect parameters 6*.
We then add confounding error g; where g; ~ N(0.5,0.2)
for disadvantaged applicants and g; ~ N(1.5,0.2) for ad-
vantaged applicants. Disadvantage applicants could have
lower baseline outcomes, e.g. due to institutional barriers
or discrimination. While the setting we consider is sim-
plistic, Figures 3 and 4 demonstrate that our semi-synthetic
admissions data is somewhat realistic.’

E[WW,T] = Each row of E[W;] corre-

C.2. Experimental Details

We evaluate our model on two semi-synthetic datasets:
one based on our running university admission example
(4) and the TAIWAN-CREDIT dataset obtained from the
UCI Machine Learning Repository (25). These datasets

are publicly available at www.openintro.org/

2For example, the mean shift in SAT scores from the first to
second exam is 46 points (5). In our data, the mean shift for
disadvantaged and advantaged applicants is about 36 points and 91
points, respectively.
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data/index.php?data=satgpa and
//archive.ics.uci.edu/ml/datasets/
default+of+credit+card+clients, respec-
tively. These datasets do not contain personally identifiable
information or offensive content. Since this is a publically
available dataset, no consent from the people whose data
we are using was required. We ran our experiments on a
2020 MacBook Air laptop with 16GB of RAM.

https:

D. Comparison with Shavit et al.

The setting most similar to ours is that of Shavit et al.. They
consider a strategic classification setting in which an agent’s
outcome is a linear function of features —some observable
and some not (see Figure 5 for a graphical representation
of their model). While they assume that an agent’s hidden
attributes can be modified strategically, we choose to model
the agent as having an unmodifiable private fype. Both of
these assumptions are reasonable, and some domains may be
better described by one model than the other. For example,
the model of Shavit et al. may be useful in a setting such
as car insurance pricing, where some unobservable factors
which lead to safe driving are modifiable. On the other hand,
settings like our college admissions example in which the
unobservable features which contribute to college success
(i.e. socioeconomic status, lack of resources, etc., captured
in g;) are not easily modifiable.

One benefit of our setting is that we are able to use 6; as a
valid instrument to recover the true relationship 8* between
observable features and outcomes. This is generally not
possible in the model of (22), since 6, violates the backdoor
criterion as long as there exists any hidden features h; and is
therefore not a valid instrument. Another difference between
our setting and theirs is that we allow for a heterogeneous
population of agents, while they do not. Specifically, they
assume that each agent’s mapping from actions to features is
the same, while our model is capable of handling mappings
which vary from agent-to-agent.

A natural question is whether or not there exists a general
model which captures the setting of both Shavit et al. and
ours. We provide such a model in Figure 6. In this setting,
an agent has both observable and unobservable features,
both of which are affected by the assessment rule 8; de-
ployed and the agent’s private type u;. However, much like
the setting of Shavit et al., 8 violates the backdoor criterion,
so it cannot be used as a valid instrument in order to recover
the true relationship between observable features and out-
comes. Moreover, the following toy example illustrates that
no form of true parameter recovery can be performed when
an agent’s unobservable features are modifiable.

Example D.1. Consider the one-dimensional setting

ye = 0% + B e,

Figure 5: Graphical model of Shavit et al.. Observable
features x; (e.g. the type of car a person drives) and unob-
servable features h; (e.g. how defensive of a diver someone
is) are affected by 8, through action a; (e.g. buying a new
car) and common action conversion matrix W (representing,
in part, the cost to a person of buying a new car). Outcome
y; (in this example, the person’s chance of getting in an
accident) is affected by x; and h; through the true causal
relationship 6;. Note that causal parameter recovery is not
possible in this setting unless all features are observable.

gt

Figure 6: Graphical model which captures both our setting
and that of Shavit et al.. In this setting, observable fea-
tures x; and unobservable features h, are affected by 6,
through action a;. The agent’s private type u; affects x; and
h; through initial feature values z; and action conversion
matrix W;. The agent’s outcome y; depends on x; and h;
through the causal relationship 8™ and u; through confound-
ing term g;. Note that much like the setting of (22), causal
parameter recovery is not possible in this setting unless all
features are observable.
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where x; is an agent’s observable, modifiable feature and
hy is an unobservable, modifiable feature. If the relation-
ship between x; and h; is unknown, then it is generally
impossible to recover the true relationship between x, h,
and outcome y;. To see this, consider the setting where
h¢ and xy are highly correlated. In the extreme case, take
hy = x4, Vt. (Note we use equality to indicate identical
feature values, not a causal relationship.) In this setting,
the models 0* = 1, p* = 1 and 0* = 2, * = 0 produce
the same outcome y; for all x € R, making it impossible
to distinguish between the two models, even in the limit of
infinite data.



