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Abstract

Automated decision-making tools increasingly as-
sess individuals to determine if they qualify for
high-stakes opportunities. A recent line of re-
search investigates how strategic agents may re-
spond to such scoring tools to receive favorable
assessments. While prior work has focused on
the short-term strategic interactions between a
decision-making institution (modeled as a prin-
cipal) and individual decision-subjects (modeled
as agents), we investigate interactions spanning
multiple time-steps. In particular, we consider
settings in which the agent’s effort investment to-
day can accumulate over time in the form of an
internal state—impacting both his future rewards
and that of the principal. We characterize the
Stackelberg equilibrium of the resulting game and
provide novel algorithms for computing it. Our
analysis reveals several intriguing insights about
the role of multiple interactions in shaping the
game’s outcome: We establish that in our stateful
setting, the class of all linear assessment poli-
cies remains as powerful as the larger class of all
monotonic assessment policies. More importantly,
we show that with multiple rounds of interaction
at her disposal, the principal is more effective at
incentivizing the agent to accumulate effort in her
desired direction. Our work addresses several crit-
ical gaps in the growing literature on the societal
impacts of automated decision-making—by fo-
cusing on longer time horizons and accounting
for the compounding nature of decisions individu-
als receive over time.

1. Introduction
Automated decision-making tools increasingly assess indi-
viduals to determine whether they qualify for life-altering

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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opportunities in domains such as lending (12), higher educa-
tion (15), employment (18), and beyond. These assessment
tools have been widely criticized for the blatant disparities
they produce through their scores (20, 2). This overwhelm-
ing body of evidence has led to a remarkably active area
of research into understanding the societal implications of
algorithmic/data-driven automation. Much of the existing
work on the topic has focused on the immediate or short-
term societal effects of automated decision-making. (For
example, a thriving line of work in Machine Learning (ML)
addresses the unfairness that arises when ML predictions
inform high-stakes decisions (8, 10, 14, 4, 1, 7, 5) by defin-
ing it as a form of predictive disparity, e.g., inequality in
false-positive rates (10, 2) across social groups.) With the
exception of several noteworthy recent articles (which we
discuss shortly), prior work has largely ignored the pro-
cesses through which algorithmic decision-making systems
can induce, perpetuate, or amplify undesirable choices and
behaviors.

Our work takes a long-term perspective toward modeling the
interactions between individual decision subjects and algo-
rithmic assessment tools. We are motivated by two key ob-
servations: First, algorithmic assessment tools often provide
predictions about the latent qualities of interest (e.g., credit-
worthiness, mastery of course material, or job productivity)
by relying on imperfect but observable proxy attributes that
can be directly evaluated about the subject (e.g., past fi-
nancial transactions, course grades, peer evaluation letters).
Moreover, their design ignores the compounding nature of
advantages/disadvantages individual subjects accumulate
over time in pursuit of receiving favorable assessments (e.g.,
debt, knowledge, job-related skills). To address how in-
dividuals respond to decisions made about them through
modifying their observable characteristics, a growing line
of work has recently initiated the study of the strategic in-
teractions between decision-makers and decision-subjects
(see, e.g., (6, 11, 16, 13, 9)). This existing work has focused
mainly on the short-term implications of strategic interac-
tions with algorithmic assessment tools—e.g., by modeling
it as a single round of interaction between a principal (the
decision-maker) and agents (the decision-subjects) (13). In
addition, existing work that studies interactions over time
assume that agents are myopic in responding to the decision-
maker’s policy (3, 19, 17, 6). We expand the line of inquiry
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Stateful Strategic Regression

to multiple rounds of interactions, accounting for the im-
pact of actions today on the outcomes players can attain
tomorrow.

Our multi-round model of principal-agent interactions.
We take the model proposed Kleinberg & Raghavan (13) as
our starting point. In Kleinberg & Raghavan’s formulation, a
principal interacts with an agent once, where the interaction
takes the form of a Stackelberg game. The agent receives
a score y = f(θ,o), in which θ is the principal’s choice
of assessment parameters, and o is the agent’s observable
characteristics. The score is used to determine the agent’s
merit with respect to the quality the principal is trying to
assess. (As concrete examples, y could correspond to the
grade a student receives for a class, or the FICO credit score
of a loan applicant.) The principal moves first, publicly
announcing her assessment rule θ used to evaluate the agent.
The agent then best responds to this assessment rule by de-
ciding how to invest a fixed amount of effort into producing
a set of observable features o that maximize his score y.
Kleinberg & Raghavan characterize the assessment rules
that can incentivize the agent to invest in specific types of ef-
fort (e.g., those that lead to real improvements in the quality
of interest as opposed to gaming the system). We generalize
the above setting to T > 1 rounds of interactions between
the principal and the agent and allow for the possibility of
certain effort types rolling over from one step to the next.
Our key finding is that longer time horizon provides the
principal additional latitude in the range of effort sequences
she can incentivize the agent to produce.

To build intuition as to why repeated interactions lead to the
expansion of incentivizable efforts, consider the following
stylized example:

Example 1.1. Consider the classroom example of Klein-
berg & Raghavan where a teacher (modeled as a principal)
assigns a student (modeled as an agent) an overall grade
y based on his observable features; in this case test and
homework score. Assume that the teacher chooses an as-
sessment rule and assigns a score y = θTETE+θHWHW ,
where TE is the student’s test score HW is his homework
score, and θT , θHW ∈ R are the weight of each score in
the student’s overall grade. The student can invest effort
into any of three activities: copying answers on the test
(CT , improves test score), studying (S, improves both test
and homework score), and looking up homework answers
online (CH , improves homework score). In a one-round
setting where the teacher only evaluates the student once,
the student may be more inclined to copy answers on the test
or look up homework answers online, since these actions
immediately improve the score with relatively lower efforts.
However, in a multiple-round setting, these two actions do
not improve the student’s knowledge (which impacts the
student’s future grades as well), and so these efforts do not
carry over to future time steps. When there are multiple

Figure 1: Average effort spent studying vs. average effort
spent cheating over time for the example in Appendix A.
The line x+ y = 1 represents the set of all possible Pareto
optimal average effort profiles. The shaded region under
the line represents the set of average effort profiles which
can be incentivized with a certain time horizon. Darker
shades represent longer time horizons. In the case where
T = 1, it is not possible to incentivize the agent to spend
any effort studying. Arrows are used to demonstrate the
additional set of Pareto optimal average effort profiles that
can be incentivized with each time horizon. As the time
horizon increases, it becomes possible to incentivize a wider
range of effort profiles.

rounds of interaction, the student will be incentivized to
invest effort into studying, as knowledge accumulation over
time takes less effort in the long-run compared to cheat-
ing every time. We revisit this example in further detail in
Section 2.

Summary of our findings and techniques. We formal-
ize settings in which the agent’s effort investment today
can accumulate over time in the form of an internal state—
impacting both his future rewards and that of the principal.
We characterize the Stackelberg equilibrium of the resulting
game and establish that for the principal, the class of all
linear assessment policies remains as powerful as the larger
class of all monotonic assessment policies. In particular,
we prove that if there exists an assessment policy that can
incentivize the agent to produce a particular sequence of
effort profiles, there also exists a linear assessment policy
which can incentivize the exact same effort sequence.

Perhaps our most significant finding is that with multiple
rounds of assessments at her disposal, the principal is signif-
icantly more effective at incentivizing the agent to accumu-
late effort in her desired direction (as demonstrated in Figure
1 for a simple teacher-student example). In summary, our
work addresses two critical gaps in the growing literature
on the societal impacts of automated decision-making–by



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Stateful Strategic Regression

focusing on longer time horizons and accounting for the
compounding nature of decisions individuals receive over
time.

2. Problem formulation
In our stateful strategic regression setting, a principal in-
teracts with the same agent over the course of T time-
steps, modeled via a Stackelberg game.1 The principal
moves first, announcing an assessment policy, which con-
sists of a sequence of assessment rules given by parameters
{θt}Tt=1. Each θt is used for evaluating the agent at round
t = 1, · · · , T . The agent then best responds to this assess-
ment rule by investing effort in different activities, which in
turn produces a series of observable features {ot}Tt=1 that
maximize his overall score. Through each assessment round
t ∈ {1, · · · , T}, the agent receives a score yt = f(θt,ot),
where θt is the principal’s assessment parameters for round
t, and ot is the agent’s observable features at that time.
Following Kleinberg & Raghavan, we focus on monotone
assessment rules.

Definition 2.1 (Monotone assessment rules). A assessment
rule f(θ, ·) : Rn → R is monotone if f(θ,o) ≥ f(θ,o′)
for ok ≥ o′k ∀k ∈ {1, ..., n}. Additionally, ∃k ∈ {1, ..., n}
such that strictly increasing ok strictly increases f(θ,o).

For convenience, we assume the principal’s assessment rules
are linear, that is, yt = f(θt,ot) = θ>t ot. Later we show
that the linearity assumption is without loss of generality.
We also restrict θt to lie in the n-dimensional probability
simplex ∆n. That is, we require each component of θt to
be at least 0 and the sum of the n components equal 1.

From effort investments to observable features and in-
ternal states. The agent can modify his observable features
by investing effort in various activities. While these effort
investments are private to the agent and the principal cannot
directly observe them, they lead to features that the princi-
pal can observe. In response to the principal’s assessment
policy, The agent plays an effort policy, consisting of a
sequence of effort profiles {et}Tt=1 where each individual
coordinate of et (denoted by et,j) is a function of the prin-
cipal’s assessment policy {θt}Tt=1. Specifically, the agent
chooses his policy (e1, · · · , eT ), so that it is a best-response
to the the principal’s assessment policy (θ1, · · · ,θT ).

Next, we specify how effort investment translates into ob-
servable features. We assume an agent’s observable features
in the first round take the form o1 = o0 + σW (e1), where
o0 ∈ Rn is the initial value of the agent’s observable fea-
tures before any modification, e1 ∈ Rd is the effort the
agent expends to modify his features in his first round of

1To improve readability, we adopt the convention of referring
to the principal as she/her and the agent as he/him throughout the
paper.

interaction with the principal, and σW : Rd → Rn is the
effort conversion function, parameterized by W . The ef-
fort conversion function is some concave mapping from
effort expended to observable features. (For example, if
the observable features in the classroom setting are test and
homework scores, expending effort studying will affect both
an agent’s test and homework scores, although it may re-
quire more studying to improve test scores from 90% to
100% than from 50% to 60%.)

Over time, effort investment can accumulate. (For example,
small businesses accumulate wealth over time by following
good business practices. Students learn as they study and
accumulate knowledge.) This accumulation takes the form
of an internal state, which has the form st = s0+Ω

∑t−1
i=1 ei.

Here Ω ∈ Rd×d is a diagonal matrix in which Ωj,j , j ∈
{1, . . . , d} determines how much one unit of effort (e.g.,
in the jth effort coordinate, ej) rolls over from one time
step to the next, and s0 is the agent’s initial “internal state”.
An agent’s observable features are, therefore, a function
of both the effort he expends, as well as his internal state.
Specifically, ot = σW (st + et) (here σW (s0) is analogous
to o0 in the single-shot setting).

Utility functions for the agent and the principal. Given
the above mapping, the agent’s goal is to pick his effort pro-
files so that the observable features they produce maximize
the sum of his scores over time, that is, the agent’s utility =∑T

t=1 yt =
∑T

t=1 θ
>
t ot. Our focus on the sum of scores

over time is a conventional choice and is motivated by real-
world examples. (A small business owner who applies for
multiple loans cares about the cumulative amount of loans
he/she receives. A student taking a series of exams cares
about his/her average score across all of them.)

The principal’s goal is to choose his assessment rules over
time so as to maximize cumulative effort investments accord-
ing to her preferences captured by a matrix Λ. Specifically,
the principal’s utility =

∥∥∥Λ
∑T

t=1 et

∥∥∥
1
. The principal’s

utility can be thought of as a weighted L1 norm of the
agent’s cumulative effort, where Λ ∈ Rd×d is a diagonal
matrix where the element Λjj denotes how much the princi-
pal wants to incentivize the agent invest in effort component
ej .2

Constraints on agent effort. As was the case in the single-
shot setting of Kleinberg & Raghavan, we assume that the
agent’s choice of effort et at each time t is subject to a fixed
budget B. Without loss of generality, we consider the case

2Note that while we only consider diagonal Ω ∈ Rd×d
+ , our

results readily extend to general Ω,∈ Rd×d
+ . By focusing on

diagonal matrices we have a one-to-one mapping between state
and effort components. Non-diagonal Ω corresponds to cases
where different effort components can contribute to multiple state
components.
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where B = 1.

Proposition 2.2. It is possible to incentivize a wider range
of effort profiles by modeling the principal-agent interaction
over multiple time-steps, compared to a model which only
considers one-shot interactions.

See Appendix A for an example which illustrates this phe-
nomena.

3. Equilibrium characterization
The following optimization problem captures the expres-
sion for the agent’s best-response to an arbitrary sequence
of assessment rules.3 (Recall that d refers to the dimen-
sion of effort vectors (et’s), and n refers to the number of
observable features, i.e., the dimension of ot’s.)

The set of agent best-responses to a linear assessment policy,
{θt}Tt=1, is given by the following optimization procedure:

{e∗t }Tt=1 = arg max
e1,...,eT

T∑
t=1

θ>t σW

(
s0 + Ω

t−1∑
i=1

ei + et

)
,

s.t. et,j ≥ 0,

d∑
j=1

et,j ≤ 1 ∀t, j

The goal of the principal is to pick an assessment policy
{θ}Tt=1 in order to maximize the total magnitude of the
effort components she cares about, i.e.

{θ∗t }Tt=1 = arg max
θ1,...,θT

∥∥∥∥∥Λ

T∑
t=1

et(θt, . . . ,θT )

∥∥∥∥∥
1

,

s.t. θt ∈ ∆n ∀t

Substituting the agent’s optimal effort policy into the above
expression, we obtain the following formalization of the
principal’s assessment policy:

Proposition 3.1 (Stackelberg Equilibrium). Suppose the
principal’s strategy space consists of all sequences of linear
monotonic assessment rules. The Stackelberg equilibrium of
the stateful strategic regression game,

(
{θ∗t }Tt=1, {e∗t }Tt=1

)
,

can be specified as the following bilevel multiobjective opti-
mization problem. Moving forward, we omit the constraints
on the agent and principal action space for brevity.

{θ∗t }Tt=1 = arg max
θ1,...,θT

∥∥∥∥∥Λ

T∑
t=1

e∗t (θt, ...,θT )

∥∥∥∥∥
1

,

s.t. {e∗t }Tt=1 = arg max
e1,...,eT

T∑
t=1

θ>t σW

(
s0 + Ω

t−1∑
i=1

ei + et

)
3Throughout this section when it improves readability, we

denote the dimension of matrices in their subscript (e.g., Xa×b

means X is an a× b matrix).

3.1. Linear assessment policies are optimal

Throughout our formalization of the Stackelberg equilib-
rium, we have assumed that the principal deploys linear
assessment rules, when a priori it is not obvious why the
principal would play assessment rules of this form. We
now show that the linear assessment policy assumption is
without loss of generality.

We start by defining the concept of incentivizability for
an effort policy, and characterize it through a notion of a
dominated effort policy.

Definition 3.2 (Incentivizability). An effort policy {et}Tt=1

is incentivizable if there exists an assessment policy
{f(θt, ·)}Tt=1 for which playing {et}Tt=1 is a best response.
(Note: {et}Tt=1 need not be the only best response.)

Definition 3.3 (Dominated Effort Policy). We say the effort
policy {et}Tt=1 is dominated by another effort policy if an
agent can achieve the same or higher observable feature
values by playing another effort policy {at}Tt=1 that does
not spend the full effort budget on at least one time-step.

Note that an effort policy which is dominated by another
effort policy will never be played by a rational agent no
matter what set of decision rules are deployed by the prin-
cipal, since a better outcome for the agent will always be
achievable.

Theorem 3.4. For any effort policy {et}Tt=1 that is not
dominated by another effort policy, there exists a linear
assessment policy that can incentivize it.

See Appendix C for the complete proof. We characterize
whether an effort policy {et}Tt=1 is dominated or not by a
linear program, and show that a subset of the dual variables
correspond to a linear assessment policy which can incen-
tivize it. Kleinberg & Raghavan present a similar proof
for their setting, defining a linear program to characterize
whether an effort profile et is dominated or not. They then
show that if an effort profile is not dominated, the dual
variables of their linear program correspond to a linear as-
sessment rule which can incentivize it. While the proof idea
is similar, their results do not extend to our setting because
our linear program must include an additional constraint for
every time-step to ensure that the budget constraint is always
satisfied. We show that by examining the complementary
slackness condition, we can upper-bound the gradient of the
agent’s cumulative score with respect to a subset of the dual
variables {λt}Tt=1 (where each upper bound depends on the
”extra” term γt introduced by the linear budget constraint for
that time-step). Finally, we show that when an effort policy
is not dominated, all of these bounds hold with equality
and, because of this, the subset of dual variables {λt}Tt=1

satisfy the definition of a linear assessment policy which
can incentivize the effort policy {et}Tt=1.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Stateful Strategic Regression

References
[1] Agarwal, A., Beygelzimer, A., Dudı́k, M., Langford,

J., and Wallach, H. A reductions approach to fair
classification. arXiv preprint arXiv:1803.02453, 2018.

[2] Angwin, J., Larson, J., Mattu, S., and Kirchner, L.
Machine bias. Propublica, 2016.

[3] Bechavod, Y., Ligett, K., Wu, Z. S., and Ziani, J. Gam-
ing helps! learning from strategic interactions in natu-
ral dynamics. arXiv preprint arXiv:2002.07024, 2020.

[4] Celis, L. E., Huang, L., Keswani, V., and Vishnoi,
N. K. Classification with fairness constraints: A meta-
algorithm with provable guarantees. In Proceedings
of the Conference on Fairness, Accountability, and
Transparency, pp. 319–328. ACM, 2019.

[5] Corbett-Davies, S. and Goel, S. The measure and mis-
measure of fairness: A critical review of fair machine
learning. arXiv preprint arXiv:1808.00023, 2018.

[6] Dong, J., Roth, A., Schutzman, Z., Waggoner, B., and
Wu, Z. S. Strategic classification from revealed prefer-
ences. In Proceedings of the 2018 ACM Conference
on Economics and Computation, pp. 55–70, 2018.

[7] Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor,
J., and Pontil, M. Empirical risk minimization under
fairness constraints. arXiv preprint arXiv:1802.08626,
2018.

[8] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and
Zemel, R. Fairness through awareness. In Proceed-
ings of the 3rd Innovations in Theoretical Computer
Science Conference, pp. 214–226. ACM, 2012.

[9] Hardt, M., Megiddo, N., Papadimitriou, C., and Woot-
ters, M. Strategic classification. In Proceedings of the
2016 ACM conference on innovations in theoretical
computer science, pp. 111–122, 2016.

[10] Hardt, M., Price, E., Srebro, N., et al. Equality of op-
portunity in supervised learning. In Advances in Neu-
ral Information Processing Systems, pp. 3315–3323,
2016.

[11] Hu, L., Immorlica, N., and Vaughan, J. W. The dis-
parate effects of strategic manipulation. In Proceed-
ings of the 2nd ACM Conference on Fairness, Account-
ability, and Transparency, 2019.

[12] Jagtiani, J. and Lemieux, C. The roles of alternative
data and machine learning in fintech lending: evidence
from the lendingclub consumer platform. Financial
Management, 48(4):1009–1029, 2019.

[13] Kleinberg, J. and Raghavan, M. How do classifiers
induce agents to invest effort strategically? ACM
Transactions on Economics and Computation (TEAC),
8(4):1–23, 2020.

[14] Kleinberg, J., Mullainathan, S., and Raghavan, M.
Inherent trade-offs in the fair determination of risk
scores. arXiv preprint arXiv:1609.05807, 2016.
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A. Formalizing the classroom example
Example A.1. We demonstrate this by revisiting the class-
room example. Recall that a teacher assigns a student
an overall grade y = θTETE + θHWHW , where TE is
the student’s test score HW is their homework score, and
θTE & θHW are the weight of each score in the student’s
overall grade. The student can invest effort into any of
three activities: copying answers on the test (CT , improves
test score), studying (S, improves both test and homework
score), and looking up homework answers online (CH , im-
proves homework score). Suppose the relationship between
observable features and effort e the agent chooses to spend
is defined by the equations

TE = TE0 +WCTCT +WSTS

HW = HW0 +WSHS +WCHCH

where TE0 and HW0 are the test and homework scores the
student would receive if they did not expend any effort. If
WCT = WCH = 3 and WST = WSH = 1, there is no
combination of θTE , θHW values the teacher can deploy
to incentivize the student to study, because the benefit of
cheating is just too great. (See (13) for more detail.)

Now consider a multi-step interaction between a teacher
and student in which effort invested in studying carries over
to future time-steps in the form of knowledge accumulation.
The relationships between observable features and effort
expended are now defined as

TEt = TE0 +WCTCTt +WST st

and

HWt = HW0 +WSHst +WCHCHt

where st =
∑t

i=1 Si is the agent’s internal knowledge
state. Instead of assigning students a single score y1, the
teacher assigns the student a score yt at each round by
picking θt,T , θt,HW at every time-step. The student’s grade
is then the summation of all scores across time. Suppose
T ≥ 3, where T is the number of rounds of interaction.
Consider WCT = WCH = 3, WST = WSH = 1, and
TE0 = HW0 = 0. Unlike in the single-round setting, it is
easy to verify that students can now be incentivized to study
by picking θt,TE = θt,HW = 0.5 ∀t.

(a) Single-step classroom setting.

(b) Multi-step classroom setting.

Figure 2: Comparison between the single-step and multi-
step scenarios in the hypothetical classroom setting. The
single-step formulation does not account for changes in
the student’s internal state over time. In the multi-step
formulation, effort put towards studying accumulates in
the form of knowledge. Modeling this effort accumulation
allows the teacher to incentivize the student to study across
a wider range of parameter values. The agent can invest
effort in 3 actions: cheating on the test (CT), studying (S),
and cheating on the homework (CH). W values denote how
much one unit of effort translates to the two observable
features, test score (T) and homework score (HW). The
student’s score (yt) at each time-step is a weighted average
of these two observable features. In the multi-step setting,
st denotes the student’s internal knowledge state at time t.
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B. Equilibrium derivations
B.1. Agent’s best-response effort sequence

A rational agent solves the following optimization to deter-
mine his best-response effort policy:

{e∗t }Tt=1 = arg max
e1,...,eT

T∑
t=1

(yt = ft(e1, . . . , et))

s.t. et,j ≥ 0 ∀t, j,
d∑

j=1

et,j ≤ 1 ∀t

Recall that the agent’s score yt at each time-step is a function
of (e1, . . . , et), the sequence of effort expended by the agent
so far. Replacing the score yt and observable features ot

with their respective equations, we obtain the expression

{e∗t }Tt=1 = arg max
e1,...,eT

T∑
t=1

θ>t σW (st + et)

s.t. et,j ≥ 0 ∀t, j,
d∑

j=1

et,j ≤ 1 ∀t

where the agent’s internal state st at time t is a function of
the effort he expends from time 1 to time t− 1. Replacing
st with the expression for agent state, we get

{e∗t }Tt=1 = arg max
e1,...,eT

T∑
t=1

θ>t σW

(
s0 + Ω

t−1∑
i=1

ei + et

)

s.t. et,j ≥ 0 ∀t, j,
d∑

j=1

et,j ≤ 1 ∀t

C. Proof of Theorem 3.4
Proof. Let κ be the optimal value of the following linear
program:

V ({et}Tt=1) = min
a1,a2,...,aT

T∑
t=1

‖at‖1

s.t. W

(
Ω

t−1∑
i=1

ai + at

)
≥W

(
Ω

t−1∑
i=1

ei + et

)
,

at ≥ 0d, ‖at‖1≤ 1, ∀t

(1)

Optimization 1 can be thought of as trying to minimize
the total effort {at}Tt=1 the agent spends across all T time-
steps, while achieving the same or greater feature values
at every time t compared to {et}Tt=1. Let {a∗t }Tt=1 denote
the set of optimal effort profiles for Optimization 1. If
{et}Tt=1 ∈ {a∗t }Tt=1, a value of κ = T is obtained. A
dominated effort policy is formally defined as follows:

Lemma C.1 (Dominated Effort Policy). An effort policy
{et}Tt=1 is dominated by another effort policy if κ < T .

The Lagrangian of Optimization 1 can be written as

L =

T∑
t=1

‖at‖1+

T∑
t=1

λ>t W

(
Ω

t−1∑
i=1

(ei − ai) + et − at

)
+ γt (‖at‖1−1)− µ>t at,

where λt ≥ 0n, µt ≥ 0d, ∀t.

In order for stationarity to hold, ∇atL(a∗,λ∗,µ∗,γ∗) =
0d ∀t, where x∗ denotes the optimal values for variable x.
Applying the stationarity condition to Lagrangian function,
we obtain

1d−W>λ∗t−
T∑

i=t+1

Ω>W>λ∗i +γ∗t ·1d−µ∗t = 0d, ∀t (2)

Because of dual feasibility, µt ≥ 0d ∀t. By rearranging
Equation 2 and using this fact, we can obtain the following
bound on W>λ∗t +

∑T
t=i+1 Ω>W>λ∗t :

W>λ∗t +

T∑
i=t+1

Ω>W>λ∗i ≤ (1 + γ∗t ) · 1d, ∀t (3)

Next we look at the complementary slackness condition.
For complementary slackness to hold, µ∗>t a∗t = 0 ∀t. If
κ = T , then {et}Tt=1 ∈ {a∗t }Tt=1 and therefore {et}Tt=1 is
not dominated. If {et}Tt=1 is not dominated, µ∗>t et = 0 ∀t.
This means that if et,j > 0, µt,j = 0, ∀t, j. This, along
with Equation 2, implies that

[
W>λ∗t +

T∑
i=t+1

Ω>W>λ∗i

]
j

= 1 + γ∗t

for all t, j where et,j > 0.

Switching gears, consider the set of linear assessment poli-
cies L for which {et}Tt=1 is incentivizable. The set of linear
assessment policies for which {et}Tt=1 is incentivizable is
the set of linear assessment policies for which the derivative
of the total score with respect to the agent’s effort policy is
maximal at the coordinates which {et}Tt=1 has support on.
Denote this set of coordinates as S, and the set of coordi-
nates which et has support on as St. Formally,
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Stateful Strategic Regression

L =

{θt}Tt=1

∣∣∣∣∣
[
∇at

T∑
i=1

(
yi = f

(
{at}Tt=1, {θt}Tt=1

))]
St

= max
j

(
∇at

T∑
i=1

yi

)
· 1|St|, ∀t

}

Recall that
∑T

t=1 yt =∑T
t=1 θ

>
t W

(
s0 + Ω

∑t−1
i=1 ai + at

)
. Therefore, the

gradient of
∑T

t=1 yt with respect to at can be written as

∇at

T∑
t=1

yt = W>θt +

T∑
i=t+1

Ω>W>θi, ∀t

Note that the form of∇at

∑T
t=1 yt is the same as the LHS

of Equation 3. We know that if {et}Tt=1 ∈ {a∗t }Tt=1 is incen-
tivizable, the inequality in Equation 3 will hold with equality
for all coordinates for which {et}Tt=1 has positive support.
Therefore, the derivative is maximal at those coordinates
since it is bounded to be at most 1 + γ∗t , ∀t (due to the KKT
conditions for the dominated effort policy linear program).
Because of this, {λ∗t }Tt=1 is in L, which means that {et}Tt=1

can be incentivized using a linear mechanism.


